Description

We give the following inductive definition of a “regular brackets” sequence:

  • the empty sequence is a regular brackets sequence,
  • if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
  • if a and b are regular brackets sequences, then ab is a regular brackets sequence.
  • no other sequence is a regular brackets sequence

For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < imn, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end

Sample Output

6
6
4
0
6 题意给你一个只含()[]的字符串,问你最多能配成对的有多少个和字符。
区间dp的入门题。整理下思路dp[i][j]表示区间i~j之间最大的匹配字符数。
if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']')) ————>dp[i][j]=dp[i+1][j-1]+2; 懂吧
代码如下:
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <iostream> using namespace std;
char s[];
int dp[][];
int main()
{
//freopen("de.txt","r",stdin);
while (~scanf("%s",&s))
{
if (s[]=='e')
break ;
memset(dp,,sizeof dp);
int len=strlen(s);
for (int k=;k<len;++k)
{
for (int i=,j=k;j<len;++i,++j)
{
if ((s[i]=='('&&s[j]==')')||(s[i]=='['&&s[j]==']'))
dp[i][j]=dp[i+][j-]+;
for (int x=i;x<j;x++)
dp[i][j]=max(dp[i][j],dp[i][x]+dp[x+][j]);
}
}
printf("%d\n",dp[][len-]);
}
return ;
}

POJ 2955 Brackets (区间dp入门)的更多相关文章

  1. POJ 2955 Brackets 区间DP 入门

    dp[i][j]代表i->j区间内最多的合法括号数 if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']') dp[i][j] ...

  2. HOJ 1936&POJ 2955 Brackets(区间DP)

    Brackets My Tags (Edit) Source : Stanford ACM Programming Contest 2004 Time limit : 1 sec Memory lim ...

  3. poj 2955 Brackets (区间dp基础题)

    We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a ...

  4. poj 2955"Brackets"(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 给你一个只由 '(' , ')' , '[' , ']' 组成的字符串s[ ], ...

  5. poj 2955 Brackets (区间dp 括号匹配)

    Description We give the following inductive definition of a “regular brackets” sequence: the empty s ...

  6. POJ 2955 Brackets(区间DP)

    题目链接 #include <iostream> #include <cstdio> #include <cstring> #include <vector& ...

  7. POJ 2955 Brackets 区间DP 最大括号匹配

    http://blog.csdn.net/libin56842/article/details/9673239 http://www.cnblogs.com/ACMan/archive/2012/08 ...

  8. POJ 2995 Brackets 区间DP

    POJ 2995 Brackets 区间DP 题意 大意:给你一个字符串,询问这个字符串满足要求的有多少,()和[]都是一个匹配.需要注意的是这里的匹配规则. 解题思路 区间DP,开始自己没想到是区间 ...

  9. A - Brackets POJ - 2955 (区间DP模板题)

    题目链接:https://cn.vjudge.net/contest/276243#problem/A 题目大意:给你一个字符串,让你求出字符串的最长匹配子串. 具体思路:三个for循环暴力,对于一个 ...

  10. POJ 2955 Brackets 区间合并

    输出一个串里面能匹配的括号数 状态转移方程: if(s[i]=='('&&s[j]==')'||s[i]=='['&&s[j]==']')             dp ...

随机推荐

  1. IDEA使用Maven的第一个测试

    创建完成后,点击这个按钮.进行配置. 选择第二个就行了. 然后选择这个去配置tomcat.

  2. PHP curl_escape函数

    curl_escape — 对给定的字符串进行URL编码. 说明 string curl_escape ( resource $ch , string $str ) 该函数对给定的字符串进行URL编码 ...

  3. 【LeetCode 60】第k个排列

    题目链接 [题解] 逆康托展开. 考虑康托展开的过程. K = ∑v[i]*(n-i)! 其中v[i]表示在a[i+1..n]中比a[i]小的数字的个数 (也即未出现的数字中它排名第几(从0开始)) ...

  4. ADSL(Asymmetric Digital Subscriber Loop)技术

    上行带宽,下行带宽 宽带上行下行是指一般ADSL上网方式上行与下行速率,上行就是从电脑上传的速度,下行就是从网络上的主机下载速度,一般下行速率比较高! ADSL(Asymmetric Digital ...

  5. windows系统的安装时间怎么查看

    方法一:利用命令符窗口查询 直接按下Windows+R组合键  出现运行对话框(或 点击开始—运行),输入cmd,进入命令符窗口 然后,在该界面下输入”systeminfo”,然后回车,等待系统自动运 ...

  6. rabbitmqadmin命令行管理工具-4

    rabbitmqadmin命令行管理工具原文地址: https://www.cnblogs.com/wuzhiyuan/p/6856985.htmlhttps://www.cnblogs.com/mr ...

  7. 2018-2019-2 20175126谢文航 实验三《敏捷开发与XP实践》实验报告

    一.实验报告封面 课程:Java程序设计 班级:1751 班 姓名:谢文航 学号:20175126 指导教师:娄嘉鹏 实验日期:2019年5月2日 实验时间:--- 实验序号:实验三 实验名称:敏捷开 ...

  8. CentOS 7在VMware 12中共享文件看不见的问题?

    前言 由于rhel 7.2因为没有注册导致yum无法使用,包括自己配置本地源,这个命令在你没有注册都不能使用,每次使用rpm去装软件,自己去找缺少的依赖包,实在是麻烦.于是不如就换一个系统,CentO ...

  9. JS 時間戳轉日期格式

    1.日期轉換為時間戳,(如果日期格式為時間戳,將其轉為日期類型,否則輸出傳入的數據) // 如果時間格式為時間戳,將其轉為日期 function timestampToDate(timestamp) ...

  10. ceph安装过程

    创建群集[2019-03-20 18:35:04,232][ceph_deploy.conf][DEBUG ] found configuration file at: /home/sceph/.ce ...