题目描述

BB

痛失一血(打了场Comet OJ回来就没了)

不过后来又刷了一道水题

题解

LCM+取模=结论题

结论1

\(gcd(k^{2^i}+1,k^{2^j}+1)=1 (i\neq j 且k为偶数)\)

证明:

设i<j

若存在\(q\mid k^{2^i}+1\),则\(k^{2^i}\equiv -1(mod \;q)\)

那么\(k^{2^{i+k}}\equiv 1(mod \;q)\)(k>0),则\(k^{2^j} \equiv 1(mod \;q)\),\(k^{2^j}+1 \equiv 2(mod \;q)\)

update:注意上面的k,此k非彼k

当q>2时无解,当q=2时由于k为偶数,所以k的幂+1为奇数,不存在为2的因子(即无解)

所以gcd=1

结论2

\(gcd(k^{2^i}+1,k^{2^j}+1)=2 (i\neq j 且k为奇数)\)

证明:

同上,可以发现只存在q=2的公因数

乱搞

简单又自然

先特判掉模数为2

①K不是P的倍数

如果K不是P的倍数,那么把式子拆开后变成

\(ans=\sum_{i=0}^{2^{r-l+1}-1}{({k^{2^l}})^i}\)

设\(a={k^{2^l}}\),则\(ans=\sum_{i=0}^{2^{r-l+1}-1}{a^i}\)

2l和\(2^r\)可以快速幂求,因为a0=ap-1 mod p=1,可以发现模数实际上是(P-1)

剩下的就是一个等比数列求和

因为K不是P的倍数且P为质数,所以\(k^{2^{i}}\)必定不为0,\(k^{2^{i}}-1\)(等比数列求和的分母)不会为-1

但是\(k^{2^{i}}\)可能为1,这样的话\(ans=2^{r-l+1}\)

②K是P的倍数

显然ans=1


如果K为奇数,那么就还要除掉多出来的的2R-L

code

#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#define fo(a,b,c) for (a=b; a<=c; a++)
#define fd(a,b,c) for (a=b; a>=c; a--)
using namespace std; long long K,L,R,mod,Mod,S,ans;
int Q,i,j,k,l; long long qpower(long long a,long long b)
{
long long ans=1; while (b)
{
if (b&1)
ans=ans*a%mod; a=a*a%mod;
b>>=1;
} return ans;
} void js()
{
long long s1,s2,S1,S2; --mod;
s1=qpower(2,R+1);
s2=qpower(2,L); s1-=s2;
if (s1<0)
s1+=mod;
++mod; S1=qpower(K,s1);
S2=qpower(K,s2); if (S2>1)
ans=(S1*S2%mod-1)*qpower(S2-1,Mod)%mod;
else
ans=qpower(2,R-L+1); if (ans<0)
ans+=mod;
} int main()
{
// freopen("51nod_1820_4_in.txt","r",stdin);
// freopen("51nod1820.in","r",stdin);
// freopen("51nod1820.out","w",stdout); scanf("%d",&Q);
for (;Q;--Q)
{
scanf("%lld%lld%lld%lld",&K,&L,&R,&mod);
Mod=mod-2; if (mod==2)
{
if (K&1)
printf("0\n");
else
printf("1\n"); continue;
} if (!(K%mod))
ans=1;
else
{
ans=0;
js();
} if (K&1)
ans=ans*qpower((mod+1)/2,R-L)%mod; printf("%lld\n",ans);
}
}

51nod1820 长城之旅的更多相关文章

  1. 勤拂拭软件Android开发之旅(1) 之 Android 开发环境搭建

    勤拂拭软件工作室原创出品,欢迎转载,欢迎交流. 转载请注明原文:http://www.cnblogs.com/wangleiblog/p/6019063.html 勤拂拭软件Android开发之旅目录 ...

  2. 【Linux探索之旅】第四部分第三课:文件传输,潇洒同步

    内容简单介绍 .第四部分第三课:文件传输.潇洒同步 2.第四部分第四课:分析网络.隔离防火 文件传输.潇洒同步 这一课的内容相对简单,所以我们慢慢享用. 经过上一课的学习.我们已经知道怎样远程连接到其 ...

  3. Android开发之旅(1) 之 Android 开发环境搭建

    工作室原创出品,欢迎转载,欢迎交流. 转载请注明原文:http://www.cnblogs.com/wangleiblog/p/6019063.html Android开发之旅目录 1 前言 很多朋友 ...

  4. Linq之旅:Linq入门详解(Linq to Objects)

    示例代码下载:Linq之旅:Linq入门详解(Linq to Objects) 本博文详细介绍 .NET 3.5 中引入的重要功能:Language Integrated Query(LINQ,语言集 ...

  5. WCF学习之旅—第三个示例之四(三十)

           上接WCF学习之旅—第三个示例之一(二十七)               WCF学习之旅—第三个示例之二(二十八)              WCF学习之旅—第三个示例之三(二十九)   ...

  6. 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法

    若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...

  7. Hadoop学习之旅二:HDFS

    本文基于Hadoop1.X 概述 分布式文件系统主要用来解决如下几个问题: 读写大文件 加速运算 对于某些体积巨大的文件,比如其大小超过了计算机文件系统所能存放的最大限制或者是其大小甚至超过了计算机整 ...

  8. .NET跨平台之旅:在生产环境中上线第一个运行于Linux上的ASP.NET Core站点

    2016年7月10日,我们在生产环境中上线了第一个运行于Linux上的ASP.NET Core站点,这是一个简单的提供后端服务的ASP.NET Core Web API站点. 项目是在Windows上 ...

  9. 【Knockout.js 学习体验之旅】(3)模板绑定

    本文是[Knockout.js 学习体验之旅]系列文章的第3篇,所有demo均基于目前knockout.js的最新版本(3.4.0).小茄才识有限,文中若有不当之处,还望大家指出. 目录: [Knoc ...

随机推荐

  1. MySQL5.6版本之后设置DATETIME类型自动更新

    在使用MySQL中datetime格式自动更新特性时,我们应该明确一点,datetime格式设置默认值为当前时间和自动更新时间是从MySQL5.6版本之后开始支持的.此前我们都是使用timestamp ...

  2. Burp Suite批量网页操作

    1.打开md5解密网站,并输入“21232F297A57A5A743894A0E4A801FC3”,不要点击[Decrypt It!] 1.启动Burp Suite,并设置浏览器代理 3.点击[Dec ...

  3. 【MM系列】SAP 在SAP中更改基本计量单位

    公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[MM系列]SAP 在SAP中更改基本计量单位 ...

  4. 03Java面试题-------------中科软

    1.String是最基本的数据类型吗?String和StringBuffer的区别? 不是.Java中的基本数据类型只有8个:byte,short,int,long,float,double,char ...

  5. FacertGrid()的使用

    查看数据的前五行 tips = sns.load_dataset("tips") tips.head() 引入数据,布置横向画布 g = sns.FacetGrid(tips, c ...

  6. rename批量修改文件名

    批量改名: 如文件,批量修改,把hello去掉[root@localhost wang]# ll-rw-r--r-- 1 root root 0 5月 14 02:36 a.hello.txt-rw- ...

  7. Marked Ancestor

    一道并查集的题目硬是被我当成线段树写了,感觉这样写虽然不是最好的,不过能a就行 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=103906 ...

  8. PostgreSQL设计之初的大量论文

    引自:https://www.docs4dev.com/docs/zh/postgre-sql/11.2/reference/biblio.html#STON86 该网站是一个PostgreSQL手册 ...

  9. 在JSP中<%= >,<%! %>,<% %>所代表的含义

    <%! %>:是jsp中的声明标签,通常声明全局变量,常量,方法等. <% %>:<% java代码 %>,其中可以包含局部变量,java语句等. <%= % ...

  10. spark 在启动的时候出现JAVA_HOME not set

    解决方法:在sbin目录下的spark-config.sh 中添加对应的jdk 路径,然后使用scp -r 命令复制到各个worker节点