http://acm.hdu.edu.cn/showproblem.php?pid=4336

题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐需要买的包的期望。 
注意存在某个包中一张也没有。

分析:状态压缩有个挺显然提示,N<=20,这是在次落落的在提示你。

我们首先定义: dp[st] 表示 st 状态到目标状态 的期望是多少 ; st转化为二进制0表示当前状态没有这个bit的卡片 , 1表示当前状态有这个bit位的卡片;

然后有如下的转移:1. 没有卡片-> dp[st]->dp[st]   2.有存在的卡片;dp[st]->dp[st]  3.有没有存在的卡片  :dp[st]->dp[st|(1<<bit)]

所以我们可以得到如下公式:

则dp[i]=no*(dp[i]+1)+∑pp[j]*(dp[i]+1)+∑pp[k]*(dp[i|(1<<k)]+1).----(1)

no:表示没有卡片的概率,∑pp[j]表示第j种卡片已经存在,∑pp[k]表示第j种卡片当前还没有。

显然no+∑pp[j]+∑pp[k]=1,所以花间得dp[i]=1+(no+∑pp[j])*dp[i]+∑pp[k]*dp[i|(1<<k)],dp[1<<n-1]=0递推求出dp[0]即可。

需要注意的是:(1)公式是需要进行化简的 , 需要将dp[i] 提取出来

#include<bits/stdc++.h>
using namespace std;
double dp[(<<)+],p[];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(dp,,sizeof(dp));
double no=;
for(int i= ; i<n ; i++)
{
scanf("%lf",&p[i]);
no+=p[i];
}
no=-no;
int all=(<<n)-;
dp[all]=;
for(int st=all- ; st>= ; st--)///枚举的状态
{ double pj=,pk=;
for(int j= ; j<n ; j++)
{
if(!(st&(<<j)))
{
pk+=p[j]*(dp[st|(<<j)]);
}
else
{
pj+=p[j];
}
} dp[st]=(+pk)*1.0/(-no-pj); }
printf("%.4f\n",dp[]);
} }

HDU4336 Card Collector (概率dp+状压dp)的更多相关文章

  1. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  2. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  3. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  4. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  5. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 状态压缩dp 状压dp 详解

    说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...

  8. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  9. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

随机推荐

  1. Java{0}占位符替换字符串

    Java{0}占位符替换字符串 public class Test { public static void main(String[] args) { System.out.println(Stri ...

  2. Ant-编译构建(1)-HelloWorld

    1.项目目录构成,lib包暂时为空,本次例子未引入第三方包. 2.编写相关的build.xml <?xml version="1.0" encoding="utf- ...

  3. webpack4 es6转换

    在webpack里用es6语法, ie浏览器不识别,为了让浏览器识别,需要用到bebal转换; bebal,英文是通天塔 的意思, 我们常说的巴比伦也是这个词;我估计是当初设计者是想用它作为一个沟通e ...

  4. BZOJ 4987 (树形DP)

    ###题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4987 ###分析 先考虑贪心,显然k个节点形成一棵树 求出树的直径,显然直径应该只被经 ...

  5. 【题解】1-2-K Game

    题目大意   现有\(n\)个东西,每次可以取\(1\)个,\(2\)个或\(k\)个.Alice和Bob轮流取,且Alice先取.问谁是最后一个取的.(\(0 \leq n \leq 10^9\), ...

  6. Django中orm的惰性机制

    那么首先要知道什么是ORM 专业化的角度来说:叫对象关系映射(Object-Relation Mapping)是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术. 那具体ORM是什么呢?:( ...

  7. 开发一个 Parcel-vue 脚手架工具

    前言 像我们熟悉的 vue-cli,create-react-app 等脚手架,只需要输入简单的命令 vue init webpack project,即可快速帮我们生成一个初始项目.在实际工作中,我 ...

  8. 2019牛客暑期多校训练营(第三场) - J - LRU management - 模拟

    https://ac.nowcoder.com/acm/contest/883/J 根据这个数据结构的特点,也就是计算机组成原理里面学过的cache的LRU管理算法,每次访问都会在cache中查询一页 ...

  9. HDOJ 1150 Machine Schedule

    版权声明:来自: 码代码的猿猿的AC之路 http://blog.csdn.net/ck_boss https://blog.csdn.net/u012797220/article/details/3 ...

  10. C# Lodop与C-Lopdop选择打印机

    原文:https://www.cnblogs.com/huaxie/p/9766886.html https://www.cnblogs.com/huaxie/p/10857490.html http ...