http://acm.hdu.edu.cn/showproblem.php?pid=4336

题意:有n种卡片,一个包里会包含至多一张卡片,第i种卡片在某个包中出现的次数为pi,问将所有种类的卡片集齐需要买的包的期望。 
注意存在某个包中一张也没有。

分析:状态压缩有个挺显然提示,N<=20,这是在次落落的在提示你。

我们首先定义: dp[st] 表示 st 状态到目标状态 的期望是多少 ; st转化为二进制0表示当前状态没有这个bit的卡片 , 1表示当前状态有这个bit位的卡片;

然后有如下的转移:1. 没有卡片-> dp[st]->dp[st]   2.有存在的卡片;dp[st]->dp[st]  3.有没有存在的卡片  :dp[st]->dp[st|(1<<bit)]

所以我们可以得到如下公式:

则dp[i]=no*(dp[i]+1)+∑pp[j]*(dp[i]+1)+∑pp[k]*(dp[i|(1<<k)]+1).----(1)

no:表示没有卡片的概率,∑pp[j]表示第j种卡片已经存在,∑pp[k]表示第j种卡片当前还没有。

显然no+∑pp[j]+∑pp[k]=1,所以花间得dp[i]=1+(no+∑pp[j])*dp[i]+∑pp[k]*dp[i|(1<<k)],dp[1<<n-1]=0递推求出dp[0]即可。

需要注意的是:(1)公式是需要进行化简的 , 需要将dp[i] 提取出来

#include<bits/stdc++.h>
using namespace std;
double dp[(<<)+],p[];
int main()
{
int n;
while(~scanf("%d",&n))
{
memset(dp,,sizeof(dp));
double no=;
for(int i= ; i<n ; i++)
{
scanf("%lf",&p[i]);
no+=p[i];
}
no=-no;
int all=(<<n)-;
dp[all]=;
for(int st=all- ; st>= ; st--)///枚举的状态
{ double pj=,pk=;
for(int j= ; j<n ; j++)
{
if(!(st&(<<j)))
{
pk+=p[j]*(dp[st|(<<j)]);
}
else
{
pj+=p[j];
}
} dp[st]=(+pk)*1.0/(-no-pj); }
printf("%.4f\n",dp[]);
} }

HDU4336 Card Collector (概率dp+状压dp)的更多相关文章

  1. 【BZOJ】1076 [SCOI2008]奖励关 期望DP+状压DP

    [题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n&l ...

  2. Luogu4547 THUWC2017 随机二分图 概率、状压DP

    传送门 考虑如果只有$0$组边要怎么做.因为$N \leq 15$,考虑状压$DP$.设$f_i$表示当前的匹配情况为$i$时的概率($i$中$2^0$到$2^{N-1}$表示左半边的匹配情况,$2^ ...

  3. 洛谷 P3343 - [ZJOI2015]地震后的幻想乡(朴素状压 DP/状压 DP+微积分)

    题面传送门 鸽子 tzc 竟然来补题解了,奇迹奇迹( 神仙题 %%%%%%%%%%%% 解法 1: 首先一件很明显的事情是这个最小值可以通过类似 Kruskal 求最小生成树的方法求得.我们将所有边按 ...

  4. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  5. hdu 4352 "XHXJ's LIS"(数位DP+状压DP+LIS)

    传送门 参考博文: [1]:http://www.voidcn.com/article/p-ehojgauy-ot.html 题解: 将数字num字符串化: 求[L,R]区间最长上升子序列长度为 K ...

  6. [转]状态压缩dp(状压dp)

    状态压缩动态规划(简称状压dp)是另一类非常典型的动态规划,通常使用在NP问题的小规模求解中,虽然是指数级别的复杂度,但速度比搜索快,其思想非常值得借鉴. 为了更好的理解状压dp,首先介绍位运算相关的 ...

  7. 状态压缩dp 状压dp 详解

    说到状压dp,一般和二进制少不了关系(还常和博弈论结合起来考,这个坑我挖了还没填qwq),二进制是个好东西啊,所以二进制的各种运算是前置知识,不了解的话走下面链接进百度百科 https://baike ...

  8. hdu4336 Card Collector(概率DP,状态压缩)

    In your childhood, do you crazy for collecting the beautiful cards in the snacks? They said that, fo ...

  9. hdu4336 Card Collector 概率dp(或容斥原理?)

    题意: 买东西集齐全套卡片赢大奖.每个包装袋里面有一张卡片或者没有. 已知每种卡片出现的概率 p[i],以及所有的卡片种类的数量 n(1<=n<=20). 问集齐卡片需要买东西的数量的期望 ...

随机推荐

  1. dataTables使用的详细说明整理

    本文共三个部分:官网|基本使用|遇到的问题 一.官方网站:http://www.datatables.club/ 二.基本使用: 1.dataTables的引入及初始化 <!--第一步:引入Ja ...

  2. MySQL基础和习题强化(完结)

    Mysql 1.     Mysql基础知识 1.1.     Index and table searching of Mysql 1.1.1.     Basic concepts of Mysq ...

  3. python 链接交换机并执行相关命令

    原文地址 https://blog.csdn.net/u010897775/article/details/80311786?utm_source=blogxgwz0 # encoding=utf-8 ...

  4. MySQL 中 limit 的使用

    需要注意的是,在Oracle中不使用limit,Oracle 使用rownum select no,name from emp limit 5 取前5条记录, select no,name from ...

  5. JDK11 | 第二篇 : JShell 工具

    文章首发于公众号<程序员果果> 地址 : https://mp.weixin.qq.com/s/saHBSTo4OjsIIqv_ixigjg 一.简介 Java Shell工具是JDK1. ...

  6. 小白学Python(18)——pyecharts 关系图 Graph

    Graph-基本示例 import json import os from pyecharts import options as opts from pyecharts.charts import ...

  7. React Hooks实现异步请求实例—useReducer、useContext和useEffect代替Redux方案

    本文是学习了2018年新鲜出炉的React Hooks提案之后,针对异步请求数据写的一个案例.注意,本文假设了:1.你已经初步了解hooks的含义了,如果不了解还请移步官方文档.(其实有过翻译的想法, ...

  8. 详解 vue 双向数据绑定的原理,并实现一组双向数据绑定

    1:vue 双向数据绑定的原理: Object.defineProperty是ES5新增的一个API,其作用是给对象的属性增加更多的控制Object.defineProperty(obj, prop, ...

  9. JEECG 深度使用培训班 周六周日公开课(一期班)

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/zhangdaiscott/article/details/25411023 广大技术爱好者:     ...

  10. 从后台看python--为什么说python是慢的

    python越来越作为一种科学技术研究的语言越来越流行,可是我们经常听到一个问题,python是慢的.那么我们从后台分析一下,为什么python是慢的. python是一种动态类型,解释型语言,它的值 ...