主成分分析(PCA)模型概述
数据降维
降维是对数据高维度特征的一种预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定信息损失范围内,可以为我们节省大量的时间和成本。降维也称为了应用非常广泛的数据预处理方法。
降维的目的:
- 使得数据更容易使用
- 确保变量相互独立
- 降低很多算法的计算开销
- 去除噪音
- 使得结果易懂,已解释
常见降维模型
- 主成分分析(Principal Components Analysis)
- 因子分析(Factor Analysis)
- 独立成分分析(Independ Component Analysis, ICA)
主成分分析
思想
- 去除平均值
- 计算协方差矩阵
- 计算协方差矩阵的特征值和特征向量
- 将特征值排序
- 保留前N个最大的特征值对应的特征向量
- 将数据转换到上面得到的N个特征向量构建的新空间中(实现了特征压缩)
原理
- 找出第一个主成分的方向,也就是数据方差最大的方向。
- 找出第二个主成分的方向,也就是数据方差次大的方向,并且该方向与第一个主成分方向正交(orthogonal 如果是二维空间就叫垂直)。
- 通过这种方式计算出所有的主成分方向。
- 通过数据集的协方差矩阵及其特征值分析,我们就可以得到这些主成分的值。
- 一旦得到了协方差矩阵的特征值和特征向量,我们就可以保留最大的 N 个特征。这些特征向量也给出了 N 个最重要特征的真实结构,我们就可以通过将数据乘上这 N 个特征向量 从而将它转换到新的空间上。
算法
- 输入:$m$ 个 $n$ 维样本数据 $D = (x^{(1)}, x^{(2)}, ldots, x^{(m)})$
- 输出:$m$ 个 $k$ 维样本数据
- 对样本集进行标准化;
- 计算样本的协方差矩阵 $XX^{T}$;
- 对协方差矩阵进行特征分解,得到 $n$ 个特征向量和其对应的特征值;
- 取出最大的 $k$ 个特征值对应的特征向量 $(omega_1, omega_2, ldots, omega_k)$,将所有的特征向量标准化后,组成特征向量矩阵 $W$;
- 对样本集中每一个样本 $x^{(i)}$,转化为新的样本 $z^{(i)}=W^{T}x^{(i)}$
- 得到输出的样本数据 $D_{pca} = (z^{(1)}, z^{(2)}, ldots, z^{(m)})$
优缺点
- 优点:降低数据复杂性,识别最终要的多个特征
- 缺点:
- 可能损失有用信息
- 只适用于数值型数据
算法实现
1 |
# -*- coding: utf-8 -*- import numpy as np |
主成分分析(PCA)模型概述的更多相关文章
- 一步步教你轻松学主成分分析PCA降维算法
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简 ...
- 线性判别分析(LDA), 主成分分析(PCA)及其推导【转】
前言: 如果学习分类算法,最好从线性的入手,线性分类器最简单的就是LDA,它可以看做是简化版的SVM,如果想理解SVM这种分类器,那理解LDA就是很有必要的了. 谈到LDA,就不得不谈谈PCA,PCA ...
- 机器学习 —— 基础整理(四)特征提取之线性方法:主成分分析PCA、独立成分分析ICA、线性判别分析LDA
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensiona ...
- 机器学习课程-第8周-降维(Dimensionality Reduction)—主成分分析(PCA)
1. 动机一:数据压缩 第二种类型的 无监督学习问题,称为 降维.有几个不同的的原因使你可能想要做降维.一是数据压缩,数据压缩不仅允许我们压缩数据,因而使用较少的计算机内存或磁盘空间,但它也让我们加快 ...
- 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射
机器学习降维方法概括 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...
- SciKit-Learn 可视化数据:主成分分析(PCA)
## 保留版权所有,转帖注明出处 章节 SciKit-Learn 加载数据集 SciKit-Learn 数据集基本信息 SciKit-Learn 使用matplotlib可视化数据 SciKit-Le ...
- 运用sklearn进行主成分分析(PCA)代码实现
基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主 ...
- 深度学习入门教程UFLDL学习实验笔记三:主成分分析PCA与白化whitening
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同 ...
- CSS 盒子模型概述
一.简介 CSS 盒子模型(元素框)由元素内容(content).内边距(padding).边框(border).外边距(margin)组成. 盒子模型,最里面的部分是实际内容:直接包围内 ...
随机推荐
- win10环境下pycharm成功安装torch,解决报错:from torch._C import * ImportError: DLL load failed: 找不到指定的模块
https://blog.csdn.net/watermelon12138/article/details/97624733
- sqlserver修改某列为自增
sqlserver如果建表的时候不设自增,之后是没法直接修改的,需要先删再重设: alter table 表名 drop column ID alter table 表名 add ID int ide ...
- #JS# 如何判断一个字符串是否为日期格式
var data = “2018-12-09”; //返回为false则是日期格式;isNaN(data)排除data为纯数字的情况(此处不考虑只有年份的日期,如‘2018’) if(isNaN(da ...
- PCB绘制——培训内容
1.创建PCB_Project 创建下面并保存 2.画原理图库 需要了解,画框,加引脚(该标注),改网格间距,引脚对齐对格,框选问题(从左至右还是从右至左,shift加选),给库加PCB封装 示例:画 ...
- C#Web网站的创建
一.CS与BS的区别 CS软件:需要在客户端安装软件. BS软件:只需要浏览器就能运行,Web网站就是BS软件. 创建过程: 1.文件新建---新建网站----空白网站 2.右击网站项目---添加网页 ...
- C#匿名委托,匿名函数,lambda表达式
一.类型.变量.实例之间的关系. 类型>变量>实例 类型可以创建变量,实体类可以创建实例,实例可以存储在变量里. 二.委托使用过程: 1.定义委托(写好签名): 2.创建委托变量: 3.给 ...
- windows10使用npm安装vue、vue-cli
从网上下载了一个免费的vue.js前端模板,准备和Django整合出一个项目出来,然后发现前端代码都是.vue文件,已经整合过.html,很容易,感觉这个.vue的前端稍微复杂一些 本文主要参考博客及 ...
- shell_跳板机推送公钥
#!/bin/bash#push publickey to aap-servers#将局域网内可以ping通的主机ip保存到一个文件> ip_up.txtfor i in {2..10}do { ...
- GSON解译Json为DTO
除了用okhttp网络库外,还用到google的gson库. 1. uti类的对象一般都用懒汉模式.这次gson也是用懒汉模式. public class GsonTools { private st ...
- Linux_打包文件
将多个文件打包成一个大文件,用tar命令 tar是将多个文件前后连接在一起,tar并不对文件进行压缩 tar -cf 要创建的打包文件名(最后加上.tar) 要打包的文件/列表 c代表创 ...