以下主要是摘抄denny博文的内容,更多内容大家去看原作者吧  

一 数据准备

  准备训练集和测试集图片的列表清单;

  二 导入caffe库,设定文件路径

  

# -*- coding: utf-8 -*-

import caffe
from caffe import layers as L,params as P,proto,to_proto
#设定文件的保存路径
root='/home/xxx/' #根目录
train_list=root+'mnist/train/train.txt' #训练图片列表
test_list=root+'mnist/test/test.txt' #测试图片列表
train_proto=root+'mnist/train.prototxt' #训练配置文件
test_proto=root+'mnist/test.prototxt' #测试配置文件
solver_proto=root+'mnist/solver.prototxt' #参数文件

其中train.txt 和test.txt文件已经有了,其它三个文件,我们需要自己编写。

此处注意:一般caffe程序都是先将图片转换成lmdb文件,但这样做有点麻烦。因此我就不转换了,我直接用原始图片进行操作,所不同的就是直接用图片操作,均值很难计算,因此可以不减均值。

  三 生成配置文件

  

配置文件实际上就是一些txt文档,只是后缀名是prototxt,我们可以直接到编辑器里编写,也可以用代码生成。此处,我用python来生成。

#编写一个函数,生成配置文件prototxt
def Lenet(img_list,batch_size,include_acc=False):
#第一层,数据输入层,以ImageData格式输入
data, label = L.ImageData(source=img_list, batch_size=batch_size, ntop=2,root_folder=root,
transform_param=dict(scale= 0.00390625))
#第二层:卷积层
conv1=L.Convolution(data, kernel_size=5, stride=1,num_output=20, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool1=L.Pooling(conv1, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#卷积层
conv2=L.Convolution(pool1, kernel_size=5, stride=1,num_output=50, pad=0,weight_filler=dict(type='xavier'))
#池化层
pool2=L.Pooling(conv2, pool=P.Pooling.MAX, kernel_size=2, stride=2)
#全连接层
fc3=L.InnerProduct(pool2, num_output=500,weight_filler=dict(type='xavier'))
#激活函数层
relu3=L.ReLU(fc3, in_place=True)
#全连接层
fc4 = L.InnerProduct(relu3, num_output=10,weight_filler=dict(type='xavier'))
#softmax层
loss = L.SoftmaxWithLoss(fc4, label) if include_acc: # test阶段需要有accuracy层
acc = L.Accuracy(fc4, label)
return to_proto(loss, acc)
else:
return to_proto(loss) def write_net():
#写入train.prototxt
with open(train_proto, 'w') as f:
f.write(str(Lenet(train_list,batch_size=64))) #写入test.prototxt
with open(test_proto, 'w') as f:
f.write(str(Lenet(test_list,batch_size=100, include_acc=True)))

配置文件里面存放的,就是我们所说的network。我这里生成的network,可能和原始的Lenet不太一样,不过影响不大。

  四 生成solver文件

  

同样,可以在编辑器里面直接书写,也可以用代码生成。

#编写一个函数,生成参数文件
def gen_solver(solver_file,train_net,test_net):
s=proto.caffe_pb2.SolverParameter()
s.train_net =train_net
s.test_net.append(test_net)
s.test_interval = 938 #60000/64,测试间隔参数:训练完一次所有的图片,进行一次测试
s.test_iter.append(100) #10000/100 测试迭代次数,需要迭代100次,才完成一次所有数据的测试
s.max_iter = 9380 #10 epochs , 938*10,最大训练次数
s.base_lr = 0.01 #基础学习率
s.momentum = 0.9 #动量
s.weight_decay = 5e-4 #权值衰减项
s.lr_policy = 'step' #学习率变化规则
s.stepsize=3000 #学习率变化频率
s.gamma = 0.1 #学习率变化指数
s.display = 20 #屏幕显示间隔
s.snapshot = 938 #保存caffemodel的间隔
s.snapshot_prefix =root+'mnist/lenet' #caffemodel前缀
s.type ='SGD' #优化算法
s.solver_mode = proto.caffe_pb2.SolverParameter.GPU #加速
#写入solver.prototxt
with open(solver_file, 'w') as f:
f.write(str(s))

  

  五 开始训练模型

  

训练过程中,也在不停的测试。

#开始训练
def training(solver_proto):
caffe.set_device(0)
caffe.set_mode_gpu()
solver = caffe.SGDSolver(solver_proto)
solver.solve()

最后,调用以上的函数就可以了。

if __name__ == '__main__':
write_net()
gen_solver(solver_proto,train_proto,test_proto)
training(solver_proto)

  六 完成的python文件

  

mnist.py

我将此文件放在根目录下的mnist文件夹下,因此可用以下代码执行

sudo python mnist/mnist.py

在训练过程中,会保存一些caffemodel。多久保存一次,保存多少次,都可以在solver参数文件里进行设置。

我设置为训练10 epoch,9000多次,测试精度可以达到99%

caffe的python接口学习(4)mnist实例手写数字识别的更多相关文章

  1. caffe的python接口学习(4):mnist实例---手写数字识别

    深度学习的第一个实例一般都是mnist,只要这个例子完全弄懂了,其它的就是举一反三的事了.由于篇幅原因,本文不具体介绍配置文件里面每个参数的具体函义,如果想弄明白的,请参看我以前的博文: 数据层及参数 ...

  2. keras实现mnist数据集手写数字识别

    一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi ...

  3. NN:利用深度学习之神经网络实现手写数字识别(数据集50000张图片)—Jason niu

    import mnist_loader import network training_data, validation_data, test_data = mnist_loader.load_dat ...

  4. 分类-MNIST(手写数字识别)

    这是学习<Hands-On Machine Learning with Scikit-Learn and TensorFlow>的笔记,如果此笔记对该书有侵权内容,请联系我,将其删除. 这 ...

  5. CNN完成mnist数据集手写数字识别

    # coding: utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data d ...

  6. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  7. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  8. 深度学习之 mnist 手写数字识别

    深度学习之 mnist 手写数字识别 开始学习深度学习,先来一个手写数字的程序 import numpy as np import os import codecs import torch from ...

  9. 用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别

    用MXnet实战深度学习之一:安装GPU版mxnet并跑一个MNIST手写数字识别 http://phunter.farbox.com/post/mxnet-tutorial1 用MXnet实战深度学 ...

随机推荐

  1. Rocket - tilelink - SourceShrinker

    https://mp.weixin.qq.com/s/1vyfhZuF4RyRE5Qjj6AGWA   简单介绍SourceShrinker的实现.   ​​   1. 基本介绍   用于把上游节点的 ...

  2. 重装ArchLinux后修改GRUB配置不生效问题的解决

    重装ArchLinux后修改GRUB配置不生效问题的解决 mount指令看一下挂载,或者vim /etc/fstab看一下有没有/boot,看看fstab是不是没写进去.... 我特喵昨天重装完Arc ...

  3. Java实现 LeetCode 655 输出二叉树(DFS+二分)

    655. 输出二叉树 在一个 m*n 的二维字符串数组中输出二叉树,并遵守以下规则: 行数 m 应当等于给定二叉树的高度. 列数 n 应当总是奇数. 根节点的值(以字符串格式给出)应当放在可放置的第一 ...

  4. Java实现第十届蓝桥杯JavaC组第十题(试题J)扫地机器人

    扫地机器人 时间限制: 1.0s 内存限制: 512.0MB 本题总分:25 分 [问题描述] 小明公司的办公区有一条长长的走廊,由 N 个方格区域组成,如下图所 示. 走廊内部署了 K 台扫地机器人 ...

  5. apollo与springboot集成实现动态刷新配置

    分布式apollo简介 Apollo(阿波罗)是携程框架部门研发的开源配置管理中心,能够集中化管理应用不同环境.不同集群的配置,配置修改后能够实时推送到应用端,并且具备规范的权限.流程治理等特性. 本 ...

  6. 温故知新-java多线程&深入理解线程池

    文章目录 摘要 java中的线程 java中的线程池 线程池技术 线程池的实现原理 简述 ThreadPoolExecutor是如何运行的? 线程池运行的状态和线程数量 任务执行机制 队列缓存 Wor ...

  7. Java创建ES索引实现

    1.pom.xml文件 <dependency> <groupId>org.springframework.boot</groupId> <artifactI ...

  8. POJ - 2184 Cow Exhibition 题解

    题目大意 有 \(N(N \le 100)\) 头奶牛,没有头奶牛有两个属性 \(s_i\) 和 \(f_i\),两个范围均为 \([-1000, 1000]\). 从中挑选若干头牛,\(TS = \ ...

  9. C# ASP.NET递归循环生成嵌套json结构树

    1. 建立用来保存树结构数据的目标对象 public class TreeObject { public string name { get; set; } public string value { ...

  10. c#撸的控制台版2048小游戏

    1.分析 最近心血来潮,突然想写一个2048小游戏.于是搜索了一个在线2048玩玩,熟悉熟悉规则. 只谈核心规则:(以左移为例) 1.1合并 以行为单位,忽略0位,每列依次向左进行合并,且每列只能合并 ...