题解:

矩阵乘法,在矩阵中构造当前前缀和;

注意:for(int/long long ;;);

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long Lint; Lint n,m;
int k,p;
int b[200];
int c[200];
Lint tmp1,tmp2;
Lint sum;
int minit(){
tmp1=tmp2=sum=0;
} struct Matrix{
Lint e[200][200];
Matrix(){
memset(e,0,sizeof(e));
}
int clear(){
memset(e,0,sizeof(e));
}
}t,x,y,z,ret; int Mul(){
z.clear();
for(int i=0;i<=k;++i){
for(int j=0;j<=k;++j){
for(int r=0;r<=k;++r){
z.e[i][j]=(z.e[i][j]+x.e[i][r]*y.e[r][j])%p;
}
}
}
} int Ksm(Lint p){
ret.clear();
for(int i=0;i<=k;++i)ret.e[i][i]=1;
while(p){
if(p<0)return 0;
if(p&1){
x=ret;y=t;Mul();
ret=z;
}
p>>=1;
x=t;y=t;Mul();
t=z;
}
} int main(){
minit(); scanf("%d",&k);
for(int i=1;i<=k;++i)scanf("%d",&b[i]);
for(int i=1;i<=k;++i)scanf("%d",&c[i]);
scanf("%lld%lld%d",&n,&m,&p);
for(int i=1;i<=k;++i)sum=(sum+b[i])%p; if(m<=k){
for(int i=n;i<=m;++i)tmp1=(tmp1+b[i])%p;
printf("%lld\n",tmp1);
return 0;
}else{ for(Lint i=n;i<=k;++i)tmp2=(tmp2+b[i])%p;
n=max(n,k+1LL); for(int i=1;i<=k;++i)t.e[1][i]=t.e[0][i]=c[i];
for(int i=2;i<=k;++i)t.e[i][i-1]=1;
t.e[0][0]=1;
Ksm(n-k-1); for(int i=1;i<=k;++i){
tmp1=(tmp1+ret.e[0][i]*b[k-i+1])%p;
}
tmp1=(tmp1+sum*ret.e[0][0])%p; t.clear();
for(int i=1;i<=k;++i)t.e[1][i]=t.e[0][i]=c[i];
for(int i=2;i<=k;++i)t.e[i][i-1]=1;
t.e[0][0]=1;
Ksm(m-k); for(int i=1;i<=k;++i)tmp2=(tmp2+ret.e[0][i]*b[k-i+1]%p)%p;
tmp2=(tmp2+sum*ret.e[0][0])%p; printf("%lld\n",(tmp2-tmp1+p)%p);
return 0;
}
}

  

BZOJ:3231: [Sdoi2008]递归数列的更多相关文章

  1. BZOJ 3231: [Sdoi2008]递归数列( 矩阵快速幂 )

    矩阵乘法裸题..差分一下然后用矩阵乘法+快速幂就可以了. ----------------------------------------------------------------------- ...

  2. BZOJ 3231: [Sdoi2008]递归数列 (JZYZOJ 1353) 矩阵快速幂

    http://www.lydsy.com/JudgeOnline/problem.php?id=3231   和斐波那契一个道理在最后加一个求和即可 #include<cstdio> #i ...

  3. bzoj 3231 [Sdoi2008]递归数列——矩阵乘法

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3231 矩阵乘法裸题. 1018是10^18.别忘了开long long. #include& ...

  4. bzoj 3231: [Sdoi2008]递归数列【矩阵乘法】

    今天真是莫名石乐志 一眼矩阵乘法,但是这个矩阵的建立还是挺有意思的,就是把sum再开一列,建成大概这样 然后记!得!开!long!long!! #include<iostream> #in ...

  5. BZOJ3231: [Sdoi2008]递归数列

    BZOJ3231: [Sdoi2008]递归数列 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + ...

  6. BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法

    BZOJ_3231_[Sdoi2008]递归数列_矩阵乘法 Description 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1a ...

  7. 开始玩矩阵了!先来一道入门题![SDOI2008]递归数列

    [SDOI2008]递归数列 题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + c ...

  8. P2461 [SDOI2008]递归数列

    题目描述 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj 和 cj ...

  9. [bzoj3231][SDOI2008]递归数列——矩阵乘法

    题目大意: 一个由自然数组成的数列按下式定义: 对于i <= k:ai = bi 对于i > k: ai = c1ai-1 + c2ai-2 + ... + ckai-k 其中bj和 cj ...

随机推荐

  1. 腾讯2019秋招--小q爬塔(dp)

    小Q爬塔 题目描述: 小Q 正在攀登一座宝塔,这些宝塔很特别.塔总共有 n 层,但是每两层之间的净高却不相同,所以造成了小Q 爬过每层的时间也不同.如果某一层的高度为 x,那么爬过这一层所需的时间也是 ...

  2. php 实现店铺装修4

    /** * @title 发布装修的店铺 * @example FlagShipShopDecorate.fabu? 调试参数:{"username":"17721355 ...

  3. Logback的AsyncAppender与RollingFileAppender流程解析

    近期工作中涉及到文件记录.文件翻转等操作,思考有没有成熟的代码以便参考. 因此,第一时间就联想到Logback的AsyncAppender以及RollingFileAppender. AsyncApp ...

  4. 100、Java中String类之字符串转为大写

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...

  5. IOS 3种内省方法

    IOS提供了3种内省方法 isKindOfClass 检查当前实例是否为某类及其子类 UIView *b = [UIView new]; //... id a = b; if ([a isMember ...

  6. 易升地址,windows 10, 1511 升级 1607 仍然有效

    https://www.microsoft.com/zh-cn/software-download/windows10 易升地址, windows 10 ,1511 升级 1607 仍然有效

  7. Unity ShaderLab 学习笔记(一)

    因为项目的问题,有个效果在iOS上面无法实现出来- 因为shader用的HardSurface的,在android上面跑起来没有问题- 以为在iOS上也不会有问题,但是悲剧啊,技能效果一片漆黑- 而且 ...

  8. Spring声明式事物原理分析

    基础准备 pom <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www. ...

  9. java 加法变乘法

    加法变乘法 我们都知道:1+2+3+ - + 49 = 1225 (1) 现在要求你把其中两个不相邻的加号变成乘号,使得结果为2015 比如: 1+2+3+...+10*11+12+...+27*28 ...

  10. P1062 最简分数

    P1062 最简分数 转跳点: