Opencv+Python实现缺陷检测
实验七、缺陷检测
一、 题目描述
对下面的图片进行缺陷检测操作,请详细地记录每一步操作的步骤。
第一站图片是标准样品,后面几张图中有几个样品有瑕疵,需要你通过计算在图片上显示出哪张是合格,哪张不合格。






**1.思路**
Python-Opencv中用compareHist函数进行直方图比较进而对比图片
图像直方图
图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。
图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。在实际工程中,图像直方图在特征提取、图像匹配等方面都有很好的应用。
直方图比较
1.图像相似度比较
如果我们有两张图像,并且这两张图像的直方图一样,或者有极高的相似度,那么在一定程度上,我们可以认为这两幅图是一样的,这就是直方图比较的应用之一。
2.分析图像之间关系
两张图像的直方图反映了该图像像素的分布情况,可以利用图像的直方图,来分析两张图像的关系。
直方图比较函数
cv2.compareHist(H1, H2, method)
其中:
H1,H2 分别为要比较图像的直方图
method - 比较方式
比较方式(method)
- 相关性比较 (method=cv.HISTCMP_CORREL) 值越大,相关度越高,最大值为1,最小值为0
- 卡方比较(method=cv.HISTCMP_CHISQR 值越小,相关度越高,最大值无上界,最小值0
- 巴氏距离比较(method=cv.HISTCMP_BHATTACHARYYA) 值越小,相关度越高,最大值为1,最小值为0
二、 实现过程
1.给图片添加文字的函数
#用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): #判断是否为OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', textSize, encoding="utf-8")
draw.text((left, top), text, textColor, font=fontText)
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
2.比较相关性并绘制文字
def compare(result,img0,i):
if result >0.9:
detect=ImgText_CN(img0, '合格', 10, 10, textColor=(255, 0, 0), textSize=30)
else:
detect=ImgText_CN(img0, '不合格', 10, 10, textColor=(255, 0, 0), textSize=30)
cv2.imshow("Detect_%d"%(i),detect)
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()
3.创建灰度直方图
def create_hist(img):
img = cv2.imread(img) #读取图片
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将图片转化为8bit灰度图
plt.imshow(img_gray, cmap=plt.cm.gray) #显示图片
hist = cv2.calcHist([img], [0], None, [256], [0, 256]) #灰度直方图
plt.figure()
plt.title("Grayscale Histogram")
plt.xlabel("Bins")
plt.ylabel("# of Pixels")
plt.plot(hist)
plt.xlim([0, 256])
plt.show()
return hist
4.完整代码
%matplotlib inline
from matplotlib import pyplot as plt
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
#用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): #判断是否为OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', textSize, encoding="utf-8") ##中文字体
draw.text((left, top), text, textColor, font=fontText) #写文字
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
def compare(result,img0,i):
if result >0.9: #相关性大于0.9为合格,反之为不合格
detect=ImgText_CN(img0, '合格', 10, 10, textColor=(255, 0, 0), textSize=30)
else:
detect=ImgText_CN(img0, '不合格', 10, 10, textColor=(255, 0, 0), textSize=30)
cv2.imshow("Detect_%d"%(i),detect) #显示绘制后的图片
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()
def create_hist(img):
img = cv2.imread(img) #读取图片
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将图片转化为8bit灰度图
plt.imshow(img_gray, cmap=plt.cm.gray) #显示图片
hist = cv2.calcHist([img], [0], None, [256], [0, 256]) #灰度直方图
plt.figure()
plt.title("Grayscale Histogram")
plt.xlabel("Bins")
plt.ylabel("# of Pixels")
plt.plot(hist)
plt.xlim([0, 256])
plt.show()
return hist
hist1=create_hist("0.png") #给标准样品绘制直方图
for i in range(1,6):
print(i) #打印图片序号
img=cv2.imread("%d.bmp"%(i),1)
hist2=create_hist("%d.bmp"%(i)) #给测试样品绘制直方图
match1 = cv2.compareHist(hist1, hist2, cv2.HISTCMP_BHATTACHARYYA) #返回巴氏距离
match2 = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL) #返回相关性
print("巴氏距离:%s, 相关性:%s" %(match1, match2))
print("\n")
compare(match2,img,i) #比较并绘制
三、 运行结果(效果)





四、 问题及解决方法
- 中文无法输入,解决方案:引入中文字体
五、 实验总结
通过查阅资料,学习了OpenCV的缺陷检测技术,提升了自己的能力。
实验参考:https://blog.csdn.net/qq_44262417/article/details/89217011
Opencv+Python实现缺陷检测的更多相关文章
- OpenCV + python 实现人脸检测(基于照片和视频进行检测)
OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...
- 手把手教你如何用 OpenCV + Python 实现人脸检测
配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...
- opencv python:直线检测 与 圆检测
霍夫直线变换介绍 霍夫圆检测 现实中: example import cv2 as cv import numpy as np # 关于霍夫变换的相关知识可以看看这个博客:https://blog.c ...
- opencv python运动人体检测
采用非极大值抑制,将重叠的框合并成一个. # import the necessary packages from imutils.object_detection import non_max_su ...
- opencv+python实时人脸检测、磨皮
import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...
- python opencv 图片缺陷检测(讲解直方图以及相关系数对比法)
一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关 ...
- Python人体肤色检测
代码地址如下:http://www.demodashi.com/demo/12967.html Python人体肤色检测 概述 本文中的人体肤色检测功能采用 OpenCV 库实现, OpenCV是一个 ...
- OpenCV例程实现人脸检测
前段时间看的OpenCV,其实有很多的例子程序,参考代码值得我们学习,对图像特征提取三大法宝:HOG特征,LBP特征,Haar特征有一定了解后. 对本文中的例子程序刚开始没有调通,今晚上调通了,试了试 ...
- OpenCV Python教程(3、直方图的计算与显示)
转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...
随机推荐
- 被@ResponseBoby注释的方法在拦截器的posthandle方法中设置cookie失效的问题
文章标题可能有点绕口.先来解释下遇到的问题. 我写了一个拦截器,希望能够实现保存特定方法的请求参数到cookie中. public class SaveParamInterceptor extends ...
- 数学--数论--HDU - 6124 Euler theorem (打表找规律)
HazelFan is given two positive integers a,b, and he wants to calculate amodb. But now he forgets the ...
- Codeforce 270D Greenhouse Effect
Emuskald is an avid horticulturist and owns the world's longest greenhouse - it is effectively infin ...
- linux多线程同步的四种方式
1. 在并发情况下,指令执行的先后顺序由内核决定.同一个线程内部,指令按照先后顺序执行,但不同线程之间的指令很难说清楚是哪一个先执行.如果运行的结果依赖于多线程执行的顺序,那么就会形成竞争条件,每次运 ...
- 3) drf 框架生命周期 请求模块 渲染模块 解析模块 自定义异常模块 响应模块(以及二次封装)
一.DRF框架 1.安装 pip3 install djangorestframework 2.drf框架规矩的封装风格 按功能封装,drf下按不同功能不同文件,使用不同功能导入不同文件 from r ...
- 5) ModelSerializer(重点) 基表 测试脚本 多表关系建外键 正反查 级联 插拔式连表 序列化反序列化整合 增删查 封装response
一.前戏要做好 配置:settings.py #注册drf INSTALLED_APPS = [ # ... 'api.apps.ApiConfig', 'rest_framework', ] # ...
- CC2530ADC应用
ADC单通道外部电压采集 需要设置一个上机位命令控制字符. 系统时钟初始化——32MHZ晶振 串口0函数初始化——设置串口对应引脚,波特率,清楚中断标志 串口0接收中断响应函数——U0DBUF将控制命 ...
- leetcode240——搜索二维矩阵(medium)
一.题目描述 编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target.该矩阵具有以下特性: 每行的元素从左到右升序排列. 每列的元素从上到下升序排列. 示例: 现有矩阵 ...
- Qt插件系统
说明 近期入职新公司,新公司的项目用到了Qt的插件系统,花时间了解了一下,还以为Qt的插件系统有多么高级呢,原来归根到底还是 dll 的动态调用时获取其中的类那一招啊,原理和之前的文章<DLL的 ...
- Git、Github习笔记01——Git本地仓库
作者:Eventi 出处:http://www.cnblogs.com/Eventi 欢迎转载,也请保留这段声明.谢谢! git简介 版本控制软件,由Linus(linux开发者)开发,最初用来对li ...