实验七、缺陷检测

一、 题目描述

​ 对下面的图片进行缺陷检测操作,请详细地记录每一步操作的步骤。

​ 第一站图片是标准样品,后面几张图中有几个样品有瑕疵,需要你通过计算在图片上显示出哪张是合格,哪张不合格。







**1.思路**

​ Python-Opencv中用compareHist函数进行直方图比较进而对比图片

图像直方图

图像直方图是反映一个图像像素分布的统计表,其实横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。

图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。在实际工程中,图像直方图在特征提取、图像匹配等方面都有很好的应用。

直方图比较

1.图像相似度比较

如果我们有两张图像,并且这两张图像的直方图一样,或者有极高的相似度,那么在一定程度上,我们可以认为这两幅图是一样的,这就是直方图比较的应用之一。

2.分析图像之间关系

两张图像的直方图反映了该图像像素的分布情况,可以利用图像的直方图,来分析两张图像的关系。

直方图比较函数

cv2.compareHist(H1, H2, method)

其中:

  • H1,H2 分别为要比较图像的直方图

  • method - 比较方式

比较方式(method)

  • 相关性比较 (method=cv.HISTCMP_CORREL) 值越大,相关度越高,最大值为1,最小值为0
  • 卡方比较(method=cv.HISTCMP_CHISQR 值越小,相关度越高,最大值无上界,最小值0
  • 巴氏距离比较(method=cv.HISTCMP_BHATTACHARYYA) 值越小,相关度越高,最大值为1,最小值为0

二、 实现过程

1.给图片添加文字的函数

#用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): #判断是否为OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', textSize, encoding="utf-8")
draw.text((left, top), text, textColor, font=fontText)
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)

2.比较相关性并绘制文字

def compare(result,img0,i):
if result >0.9:
detect=ImgText_CN(img0, '合格', 10, 10, textColor=(255, 0, 0), textSize=30)
else:
detect=ImgText_CN(img0, '不合格', 10, 10, textColor=(255, 0, 0), textSize=30)
cv2.imshow("Detect_%d"%(i),detect)
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows()

3.创建灰度直方图

def create_hist(img):
img = cv2.imread(img) #读取图片
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将图片转化为8bit灰度图 plt.imshow(img_gray, cmap=plt.cm.gray) #显示图片 hist = cv2.calcHist([img], [0], None, [256], [0, 256]) #灰度直方图 plt.figure()
plt.title("Grayscale Histogram")
plt.xlabel("Bins")
plt.ylabel("# of Pixels")
plt.plot(hist)
plt.xlim([0, 256])
plt.show()
return hist

4.完整代码

%matplotlib inline
from matplotlib import pyplot as plt
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont #用于给图片添加中文字符
def ImgText_CN(img, text, left, top, textColor=(0, 255, 0), textSize=20):
if (isinstance(img, np.ndarray)): #判断是否为OpenCV图片类型
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontText = ImageFont.truetype(r'C:\Windows\Fonts\simsun.ttc', textSize, encoding="utf-8") ##中文字体
draw.text((left, top), text, textColor, font=fontText) #写文字
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) def compare(result,img0,i):
if result >0.9: #相关性大于0.9为合格,反之为不合格
detect=ImgText_CN(img0, '合格', 10, 10, textColor=(255, 0, 0), textSize=30)
else:
detect=ImgText_CN(img0, '不合格', 10, 10, textColor=(255, 0, 0), textSize=30)
cv2.imshow("Detect_%d"%(i),detect) #显示绘制后的图片
key = cv2.waitKey(0)
if key==27: #按esc键时,关闭所有窗口
print(key)
cv2.destroyAllWindows() def create_hist(img):
img = cv2.imread(img) #读取图片
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #将图片转化为8bit灰度图 plt.imshow(img_gray, cmap=plt.cm.gray) #显示图片
hist = cv2.calcHist([img], [0], None, [256], [0, 256]) #灰度直方图
plt.figure()
plt.title("Grayscale Histogram")
plt.xlabel("Bins")
plt.ylabel("# of Pixels")
plt.plot(hist)
plt.xlim([0, 256])
plt.show()
return hist hist1=create_hist("0.png") #给标准样品绘制直方图
for i in range(1,6):
print(i) #打印图片序号
img=cv2.imread("%d.bmp"%(i),1)
hist2=create_hist("%d.bmp"%(i)) #给测试样品绘制直方图
match1 = cv2.compareHist(hist1, hist2, cv2.HISTCMP_BHATTACHARYYA) #返回巴氏距离
match2 = cv2.compareHist(hist1, hist2, cv2.HISTCMP_CORREL) #返回相关性
print("巴氏距离:%s, 相关性:%s" %(match1, match2))
print("\n")
compare(match2,img,i) #比较并绘制

三、 运行结果(效果)






四、 问题及解决方法

  1. 中文无法输入,解决方案:引入中文字体

五、 实验总结

通过查阅资料,学习了OpenCV的缺陷检测技术,提升了自己的能力。

实验参考:https://blog.csdn.net/qq_44262417/article/details/89217011

Opencv+Python实现缺陷检测的更多相关文章

  1. OpenCV + python 实现人脸检测(基于照片和视频进行检测)

    OpenCV + python 实现人脸检测(基于照片和视频进行检测) Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征 ...

  2. 手把手教你如何用 OpenCV + Python 实现人脸检测

    配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like Haar-like百科释义.通俗的来讲 ...

  3. opencv python:直线检测 与 圆检测

    霍夫直线变换介绍 霍夫圆检测 现实中: example import cv2 as cv import numpy as np # 关于霍夫变换的相关知识可以看看这个博客:https://blog.c ...

  4. opencv python运动人体检测

    采用非极大值抑制,将重叠的框合并成一个. # import the necessary packages from imutils.object_detection import non_max_su ...

  5. opencv+python实时人脸检测、磨皮

    import numpy as np import cv2 cap = cv2.VideoCapture(0) face_cascade = cv2.CascadeClassifier("d ...

  6. python opencv 图片缺陷检测(讲解直方图以及相关系数对比法)

    一.利用直方图的方式进行批量的图片缺陷检测(方法简单) 二.步骤(完整代码见最后) 2.1灰度转换(将原图和要检测对比的图分开灰度化) 灰度化的作用是因为后面的直方图比较需要以像素256为基准进行相关 ...

  7. Python人体肤色检测

    代码地址如下:http://www.demodashi.com/demo/12967.html Python人体肤色检测 概述 本文中的人体肤色检测功能采用 OpenCV 库实现, OpenCV是一个 ...

  8. OpenCV例程实现人脸检测

    前段时间看的OpenCV,其实有很多的例子程序,参考代码值得我们学习,对图像特征提取三大法宝:HOG特征,LBP特征,Haar特征有一定了解后. 对本文中的例子程序刚开始没有调通,今晚上调通了,试了试 ...

  9. OpenCV Python教程(3、直方图的计算与显示)

    转载请详细注明原作者及出处,谢谢! 本篇文章介绍如何用OpenCV Python来计算直方图,并简略介绍用NumPy和Matplotlib计算和绘制直方图 直方图的背景知识.用途什么的就直接略过去了. ...

随机推荐

  1. 谷歌浏览器报错Unchecked runtime.lastError: The message port closed before a response was received.。

    浏览器版本 : 报错原因:扩展程序问题 解决建议:打开chrome://extensions/,逐一关闭排查

  2. 聊聊select, poll 和 epoll_wait

    聊聊select, poll 和 epoll 假设项目上需要实现一个TCP的客户端和服务器从而进行跨机器的数据收发,我们很可能翻阅一些资料,然后写出如下的代码. 服务端 客户端 那么问题来了,如果有一 ...

  3. Listener:监听器

    目录 Listener概述 ServletContextListener Listener概述 web的三大组件之一 Servlet.Filter.Listener 事件监听机制 事件:一件事情 事件 ...

  4. Asp.Net Core MVC在View中,根据用户权限动态生成菜单

    1. 用户登录时,将用户的权限写入Cookie: //将需要的信息写入claims后 var identity = new ClaimsIdentity(claims, IdentityConstan ...

  5. Excel+Python:分组名单

    各部门的社保.公积金.全勤奖.工衣.工龄奖.罚款等名单,要统计出来,A4纸横向排版.要么发群里通知,要么打印给相应主管.部门放一列,相应部门名单放一个cell里面. 公开透明后,人头不对.人名不对,各 ...

  6. 云小课 | WAF反爬虫“三板斧”:轻松应对网站恶意爬虫

    描述:反爬虫是一个复杂的过程,针对爬虫常见的行为特征,WAF反爬虫三板斧——Robot检测(识别User-Agent).网站反爬虫(检查浏览器合法性)和CC攻击防护(限制访问频率)可以全方位帮您解决业 ...

  7. 【SPOJ – SUBST1】New Distinct Substrings 后缀数组

    New Distinct Substrings 题意 给出T个字符串,问每个字符串有多少个不同的子串. 思路 字符串所有子串,可以看做由所有后缀的前缀组成. 按照后缀排序,遍历后缀,每次新增的前缀就是 ...

  8. (1)从通信中的MCS含义开始讲起

    通信中的MCS:Modulation and Coding Scheme,意思为调制编码方案/调制编码策略,其内涵可分为两个部分:Modulation  和  Coding. 在基带的信号处理流程中, ...

  9. [hihoCoder1231 2015BeijingOnline]求圆与多边形公共部分的周长

    题意:如题 思路:离散.将所有交点求出来,相当于将多变形的边切成了很多条元边,对每条元边,有两种情况 在圆内,答案加上此边长 在圆外,答案加上此边相对于圆心的"有向转弧" #inc ...

  10. 【教程】高德地图使用ECharts实现数据可视化

    关于百度地图结合ECharts实现数据可视化的资料已经很多了,毕竟是官方提供支持的,这里就不再赘述.今天我们来讲一下让高德地图与ECharts结合来实现数据可视化图表的展示. 一.ECharts 高德 ...