题目链接:http://codeforces.com/contest/1013/problem/D

题目大意:

  给出一个 \(n \times m\) 的表格,表格上有一些初始点。若有这样的三个点:\((r_1, c_1), (r_1, c_2), (r_2, c_1)\),则由这三个点能生成出点 \((r_2, c_2)\)。现问在初始点的基础上最少添加多少个点,能使得初始点和添加的点及它们生成出来的点能填满整个表格。

知识点:  并查集

解题思路:

  可以将每一个点看成是将所在的行和列联系起来。如此一来,对于 \((r_1, c_1) + (r_1, c_2) + (r_2, c_1) \Rightarrow (r_2, c_2)\),我们可以理解为:因为 \(r_1\) 和 \(c_1\),\(r_1\) 和 \(c_2\),\(r_2\) 和 \(c_1\) 都相应地联系起来了,那么 \(r_2\) 和 \(c_2\) 也联系起来了。所以我们只要把所有的行和列都联系起来,生成出来的点就能填满整个表格。那么问题就转换成问最少建立多少联结,能将所有的行和列都联系起来。可以用并查集解决。

AC代码

 #include <bits/stdc++.h>
using namespace std;
typedef long long LL;
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
const int MAXN=+;
const int INF=0x3f3f3f3f;
const int MOD=1e9+; int fa[MAXN<<];
int finds(int x){
if(fa[x]==x) return x;
return fa[x]=finds(fa[x]);
}
int main(){
int r,c,n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=;i<=n+m;i++) fa[i]=i;
for(int i=;i<q;i++){
scanf("%d%d",&r,&c);
int f1=finds(r),f2=finds(c+n);
if(f1!=f2) fa[f1]=f2;
}
int ans=;
int root=finds();
for(int i=;i<=n+m;i++){
int temp=finds(i);
if(temp!=root){
ans++;
fa[temp]=root;
}
}
printf("%d\n",ans);
return ;
}

CF1013D Chemical table的更多相关文章

  1. CF1012B Chemical table

    $CF1012B Chemical table 给你一个 \(n\times m\) 的矩形,一开始有 \(q\) 个格子上被标记.对于任意两行两列,如果交汇的四个格子中有三个被标记,那么第 \(4\ ...

  2. Chemical table CFR500 div2D(并查集)

    给定的一个n*m的区域内,给出一些点的坐标,这些点上有一个元素,如果在矩形的子矩形的三个点都有元素,那么第四个点的元素可以自己产生,其他的元素需要购买,问最少需要购买多少中元素才可以把这个区域给填满. ...

  3. Chemical table CodeForces - 1012B

    题意: 一个棋盘 对于任何一个棋盘中的矩形 如果 任意三角存在棋子 则第四个角会自动生成一个棋子  求铺满整个棋盘 我们至少要向棋盘里加多少枚棋子 解析: 这题就是求图中有多少个连通图,可以直接dfs ...

  4. 洛谷 P5089: CodeForces #500 (Div. 1) B / 1012B : Chemical table

    题目传送门:洛谷P5089. 题意简述: 一张 \(n \times m\) 的表格,有一些格子有标记,另外一些格子没有标记. 如果 \((r_1,c_1),(r_1,c_2),(r_2,c_1)\) ...

  5. Codeforces Round #500 (Div. 2) D - Chemical table

    首先我们如果满足三缺一,那么必有同行和同列的点 如果两行有同列的数,我们可以设想,他们最后会全部填充成为两者啥都有的情况 显然这个是个并查集 现在我们有了很多集合,每个集合自己可以进行三缺一操作,但是 ...

  6. CF1012B Chemical table 题解【二分图】【构造】

    有意思的网格图转化.CF Div.1 还是挺有难度的. 注:由于本题有较完美的中文题面,所以不贴英文题面. 英文题面 题目描述 Innopolis 大学的教授正努力研究元素周期表.他们知道,有 \(n ...

  7. CF1012B Chemical table(构造)

    [Luogu-CF1012B] 还有重题 P5089[eJOI2018]元素周期表 题解原话 : 可以发现这个过程是不改变二分图中的连通分量的个数的 答案就是 连通分量数-1 证明 : 设一行或一列为 ...

  8. CF1012B Chemical table 构造_思维_并查集

    我们可以将横坐标和纵坐标看成是点.发现这些点之间是有传递性的. 题中说明,如果有矩阵中三个顶点被选,则底角的点也会被覆盖,发现这些点之间是有传递性的.那么我们最终达到的目的就是使整个图中只有 111 ...

  9. Codeforces 1012B Chemical table (思维+二分图)

    <题目链接> 题目大意:给定一个n*m的矩阵网格,向其中加点,对于一个组成矩形的四个点中如果有三个点中有元素,那么第四个点中会自动产生新的元素.问你最少再加多少个点能够填满这个网格.解题分 ...

随机推荐

  1. Android Studio SVN配置忽略文件

    1.用Android Studio创建一个项目,会在根目录和Module目录下自动生成.gitignore文件,貌似是Git的配置文件,和SVN没有关系. 2.打开Setting-Version Co ...

  2. 命令替换、权限、chmod、特殊权限

    命令替换 把字符串里面的命令先执行再把该字符串输出,与PHP的""里面的变量被执行一样. $(COMMAND) `COMMAND` [root@jiakang ~]# echo & ...

  3. #if 和#ifdef的区别

    转自:https://blog.csdn.net/zhangchiytu/article/details/7563329 先看个例子:#define TARGET_LITTLE_ENDINA 1#de ...

  4. python json.dumps中ensure_ascii的使用,load与loads的区别

    json模块最常用的两个功能: 一:json.dumps(),用于将dict拆分成str格式,称为序列化,注意序列化后,虽然print出来仍然显示的字典的样子,但是此时已经是str类型了. 其中,有时 ...

  5. 数据源管理 | 基于DataX组件,同步数据和源码分析

    本文源码:GitHub·点这里 || GitEE·点这里 一.DataX工具简介 1.设计理念 DataX是一个异构数据源离线同步工具,致力于实现包括关系型数据库(MySQL.Oracle等).HDF ...

  6. 多重背包转化成完全背包 E - Charlie's Change

    http://poj.org/problem?id=1787 这个题目我一看就觉得是一个多重背包,但是呢,我不知道怎么输出路径,所以无可奈何,我就只能看一下题解了. 看了题解发现居然是把多重背包转化成 ...

  7. 基于KepServer实现与S7-1200PLC之间的通信

    对于学习上位机开发,有一种通信方式是必须要了解的,那就是OPC是OLE for Process Control的简称,然而随着技术的不断发展,人们开始对它有了新的定义,比如Open Platform ...

  8. Struts Scan工具的使用

    前言 最近看了关于Struts2漏洞,参考文章 https://www.freebuf.com/vuls/168609.html,这篇文章里对Struts2的漏洞及原理进行了详细的讲解.自己也从网上找 ...

  9. 近期总结的一些Java基础

    1.面向过程:当需要实现一个功能的时候,每一个过程中的详细步骤和细节都要亲力亲为. 2.面向对象:当需要实现一个功能的时候,不关心详细的步骤细节,而是找人帮我做事. 3.类和对象的关系:   a-类是 ...

  10. Owin Katana 的底层源码分析

    最近看了一下开源项目asp.net katana,感觉公开的接口非常的简洁优雅,channel 9 说是受到node.js的启发设计的,Katana是一个比较老的项目,现在已经整合到asp.net c ...