图论--差分约束--HDU\HDOJ 4109 Instrction Arrangement
Problem Description
If the distance between two instructions is less than the Safe Distance, it will result in hazard, which may cause wrong result. So we need to design special circuit to eliminate hazard. However the most simple way to solve this problem is to add bubbles (useless operation), which means wasting time to ensure that the distance between two instructions is not smaller than the Safe Distance.
The definition of the distance between two instructions is the difference between their beginning times.
Now we have many instructions, and we know the dependent relations and Safe Distances between instructions. We also have a very strong CPU with infinite number of cores, so you can run as many instructions as you want simultaneity, and the CPU is so fast that it just cost 1ns to finish any instruction.
Your job is to rearrange the instructions so that the CPU can finish all the instructions using minimum time.
The first line has two integers N, M (N <= 1000, M <= 10000), means that there are N instructions and M dependent relations.
The following M lines, each contains three integers X, Y , Z, means the Safe Distance between X and Y is Z, and Y should run after X. The instructions are numbered from 0 to N - 1.
In the 1st ns, instruction 0, 1 and 3 are executed; In the 2nd ns, instruction 2 and 4 are executed. So the answer should be 2.
题意:一台电脑需要执行N条指令(0到N-1),每条指令都要花费一单位时间,可以同时执行无限条指令。有M个约束条件(X,Y,Z),表示指令Y必须在指令X执行后过Z单位时间才能执行。问执行完所有的指令需要的最短时间。
思路:显然就是差分约束嘛,设Si为指令i的开始时间,对每条约束可以得到不等式 Sy >= Sx + Z。
这道题目建的图不一定是连通的,采用初始时将所有结点加入队列的方法代替超级源点,将图变成虚连通的。
求最短时间所有跑最长路,因为图中不含负边,所以可以直接将初始的距离dis置为1,不用置为-inf。
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn =1000+10;
const int maxm =20000+10;
struct Edge
{
int from,to,dist;
Edge(){}
Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
struct BellmanFord
{
int n,m;
int head[maxn],next[maxm];
Edge edges[maxm];
int d[maxn];
bool inq[maxn];
void init(int n)
{
this->n=n;
m=0;
memset(head,-1,sizeof(head));
}
void AddEdge(int from,int to,int dist)
{
edges[m]=Edge(from,to,dist);
next[m]=head[from];
head[from]=m++;
}
void bellmanford()
{
memset(inq,0,sizeof(inq));
for(int i=0;i<n;i++) d[i]= i==0?0:INF;
queue<int> Q;
Q.push(0);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
inq[u]=false;
for(int i=head[u];i!=-1;i=next[i])
{
Edge &e=edges[i];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
if(!inq[e.to])
{
inq[e.to]=true;
Q.push(e.to);
}
}
}
}
}
}BF;
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2)
{
BF.init(n+1);
while(m--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
++u,++v;
BF.AddEdge(v,u,-d);
}
for(int i=1;i<=n;i++)
BF.AddEdge(0,i,0);
BF.bellmanford();
int max_v=-1,min_v=INF;
for(int i=1;i<=n;i++)
{
max_v=max(max_v,BF.d[i]);
min_v=min(min_v,BF.d[i]);
}
printf("%d\n",max_v-min_v+1);
}
return 0;
}
图论--差分约束--HDU\HDOJ 4109 Instrction Arrangement的更多相关文章
- 【HDOJ】4109 Instrction Arrangement
差分约束. /* 4109 */ #include <iostream> #include <queue> #include <vector> #include & ...
- POJ 3169 Layout (图论-差分约束)
Layout Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6574 Accepted: 3177 Descriptio ...
- 差分约束 HDU - 1384 HDU - 3592 HDU - 1531 HDU - 3666
Intervals Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- 【bzoj2330】: [SCOI2011]糖果 图论-差分约束-SPFA
[bzoj2330]: [SCOI2011]糖果 恩..就是裸的差分约束.. x=1 -> (A,B,0) (B,A,0) x=2 -> (A,B,1) [这个情况加个A==B无解的要特 ...
- 图论--差分约束--POJ 3159 Candies
Language:Default Candies Time Limit: 1500MS Memory Limit: 131072K Total Submissions: 43021 Accep ...
- 图论--差分约束--POJ 3169 Layout(超级源汇建图)
Like everyone else, cows like to stand close to their friends when queuing for feed. FJ has N (2 < ...
- HDU 4109 Instrction Arrangement(DAG上的最长路)
把点编号改成1-N,加一点0,从0点到之前任意入度为0的点之间连一条边权为0的边,求0点到所有点的最长路. SPFA模板留底用 #include <cstdio> #include < ...
- HDU 4109 Instrction Arrangement
题目链接:https://vjudge.net/problem/HDU-4109 题目大意 有 N 个指令,标号从 0 ~ N - 1,和 M 个指令间的先后关系,每个关系都有一个权值 w,表示后一个 ...
- POJ 1201 Intervals(图论-差分约束)
Intervals Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 20779 Accepted: 7863 Descri ...
随机推荐
- tp6源码解析-第二天,ThinkPHP6编译模板流程详解,ThinkPHP6模板源码详解
TP6源码解析,ThinkPHP6模板编译流程详解 前言:刚开始写博客.如果觉得本篇文章对您有所帮助.点个赞再走也不迟 模板编译流程,大概是: 先获取到View类实例(依赖注入也好,通过助手函数也好) ...
- Java第二十九天,文件及目录的管理,File类
一.基础知识点 1.路径分隔符 (1)什么是路径分隔符? 这个多被应用在环境变量设置当中,例如当我设置Path环境变量时,多个环境变量的路径要用 ':'(Windows系统用封号分隔)或 ':'(Li ...
- Mysql大数据量问题与解决
今日格言:了解了为什么,问题就解决了一半. Mysql 单表适合的最大数据量是多少? 我们说 Mysql 单表适合存储的最大数据量,自然不是说能够存储的最大数据量,如果是说能够存储的最大量,那么,如果 ...
- json格式的文件操作
1.字典转换为字符串(json.dumps) jsongeshi={"name":"yajuan","age":"10" ...
- Python操作rabbitmq系列(四):根据类型订阅消息
在上一章中,所有的接收端获取的所有的消息.这一章,我们将讨论,一些消息,仍然发送给所有接收端.其中,某个接收端,只对其中某些消息感兴趣,它只想接收这一部分消息.如下图:C1,只对error感兴趣,C2 ...
- Django ORM操作数据库常用API
昨天晚上,我们完成了一个简单的实例来对数据库表进行操作.今天,我们要熟悉更多的API,实现更复杂的功能.这一步完成了,我们对小型数据的操作问题也就不大了. 现在,我们还是参考django官方文档,来进 ...
- python3(十六) sorted
# sorted()函数list进行排序: L = sorted([36, 5, -12, 9, -21]) print(L) # [-21, -12, 5, 9, 36] # 可以看到默认是按照升序 ...
- 一个java 码手 的老牛 --- 涉及 一些不错的java 基础课程
http://www.zuidaima. com/user/1550463811307520/share/collect.htm
- 07-rem
一.什么是rem rem(font size of the root element)是指相对于根元素`的字体大小的单位.它就是一个相对单位. px:一个绝对单位 em:一个相对单位,根据的是当前盒子 ...
- Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(三)之Everything Is an Object
---恢复内容开始--- Both C++ and Java are hybird languages. A hybird language allow multiple programming st ...