最长公共子序列/子串 LCS(模板)
首先区分子序列和子串,序列不要求连续性(连续和不连续都可以),但子串一定是连续的
1.最长公共子序列
1、最长公共子序列问题有最优子结构,这个问题可以分解称为更小的问题
2、同时,子问题的解释可以被重复使用的,也就是说更高级别的子问题会重用更小子问题的解。
满足这两点以后,很容易就想到用动态规划来求解。
1.假设两个字符串s1, s2。当其中一个串的长度为0时,公共子序列的长度肯定为0。
2.假设s1的第i个字符与s2的第j个字符相等时,最长子序列等于s1的第i-1个字符与s2的第j-1个字符最长子序列长度+1。
3.假设s1的第i个字符与s2的第j个字符不相等时,最长子序列等于s1的第i个字符与s2的第j-1个字符最长子序列长度或s1的第i-1个字符与s2的第j个字符最
长子序列长度中最大那一个。
dp[i][j]表示s1的第i个字符与s2的第j-1个字符最长子序列长度
#include<iostream>
#include<math.h>
#include<string.h>
using namespace std;
int dp[][];
int len1,len2;
void lcs(string s1,string s2)
{
for(int i=;i<=len1;i++)//初始化
dp[i][]=;
for(int i=;i<=len2;i++)
dp[][i]=;
for(int i=;i<=len1;i++)
{
for(int j=;j<=len2;j++)
{
if(s1[i-]==s2[j-])
dp[i][j]=dp[i-][j-]+;
else
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
} }
void Print(string s1,string s2)//输出公共子序列
{
string str="";
while(len1>=&&len2>=)//从字符串s1,s2的末尾位置往前推
{
if(s1[len1-]==s2[len2-])
{
str=str+s1[len1-];
len1--;
len2--;
}
else
{
if(dp[len1][len2-]>dp[len1-][len2])//说明公共的字符在字符串s1的i位置之前,与字符s2[j]无关
len2--;
else
len1--;
}
}
for(int i=str.length();i>=;i--)
cout<<str[i]<<' ';
cout<<endl;
}
int main()
{
string s1,s2;
cin>>s1>>s2;
len1=s1.length();
len2=s2.length();
lcs(s1,s2);
cout<<dp[len1][len2]<<endl;
Print(s1,s2);
return ;
} // aaeefdhe
// saabcd //3
// a a d
2.最长公共子串
最长公共子串跟最长公共子序列的唯一区别在于,公共子串要求是连续的,子序列要求不一定连续。
具体的思路还是动态规划,不同点在于动态规划的迭代策略
#include<iostream>
#include<math.h>
#include<string.h>
using namespace std;
int dp[][];
int len1,len2;
int mx_len=,End=;//End是公共字串结束的位置
void lcs(string s1,string s2)
{
for(int i=;i<=len1;i++)//初始化
dp[i][]=;
for(int i=;i<=len2;i++)
dp[][i]=;
for(int i=;i<=len1;i++)
{
for(int j=;j<=len2;j++)
{
if(s1[i-]==s2[j-])
dp[i][j]=dp[i-][j-]+;
else
dp[i][j]=; if(dp[i][j]>mx_len)
{
mx_len=dp[i][j];
End=i-;
}
}
} } int main()
{
string s1,s2;
cin>>s1>>s2;
len1=s1.length();
len2=s2.length();
lcs(s1,s2);
cout<<mx_len<<endl;
for(int i=End-mx_len+;i<=End;i++)
cout<<s1[i];
cout<<endl;
return ;
} // aaeefdhe
// saabcd //2
//aa
最长公共子序列/子串 LCS(模板)的更多相关文章
- nyoj 36 最长公共子序列【LCS模板】
最长公共子序列 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列.tip:最长公共子序列也称作最 ...
- 动态规划经典——最长公共子序列问题 (LCS)和最长公共子串问题
一.最长公共子序列问题(LCS问题) 给定两个字符串A和B,长度分别为m和n,要求找出它们最长的公共子序列,并返回其长度.例如: A = "HelloWorld" B = & ...
- 最长公共子序列问题 (LCS)
给定两个字符串S和T.求出这两个字符串最长的公共子序列的长度. 输入: n=4 m=4 s="abcd" t="becd" 输出: 3("bcd&qu ...
- 动态规划法(十)最长公共子序列(LCS)问题
问题介绍 给定一个序列\(X=<x_1,x_2,....,x_m>\),另一个序列\(Z=<z_1,z_2,....,z_k>\)满足如下条件时称为X的子序列:存在一个严格 ...
- 【Luogu P1439】最长公共子序列(LCS)
Luogu P1439 令f[i][j]表示a的前i个元素与b的前j个元素的最长公共子序列 可以得到状态转移方程: if (a[i]==b[j]) dp[i][j]=dp[i-1][j-1]+1; d ...
- 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)
问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...
- 【线型DP模板】最上上升子序列(LIS),最长公共子序列(LCS),最长公共上升子序列(LCIS)
BEGIN LIS: 一个数的序列bi,当b1 < b2 < … < bS的时候,我们称这个序列是上升的.对于给定的一个序列(a1, a2, …, aN),我们可以得到一些上升的子序 ...
- P1439 【模板】最长公共子序列(LCS)
先来看一看普通的最长公共子序列 给定字符串A和B,求他们的最长公共子序列 DP做法: 设f[i][j]表示A[1~i]和B[1~j]的最长公共子序列的长度 那么f[i][j]=max(f[i-1][j ...
随机推荐
- winform datagridview 同步滚动
//首先添加 Scroll事件//同步滚动 private void dgYY_Scroll(object sender, ScrollEventArgs e) { ) { dgFee.FirstDi ...
- Ubuntu执行sudo apt-get update报错E: 无法获得锁 /var/lib/apt/lists/lock - open (11: 资源暂时不可用) E: 无法对目录 /var/lib/apt/lists/ 加锁
一.强制解锁,执行语句 sudo rm /var/lib/apt/lists/lock 二.终端输入 ps -aux | grep apt-get 查看一下apt-get的相关进程.然后sudo ki ...
- JS高级---三种创建对象的方式
JS高级---三种创建对象的方式 字面量的方式 (实例对象) 调用系统的构造函数 自定义构造函数方式 //创建对象---->实例化一个对象,的同时对属性进行初始化 var per=new Per ...
- 负环--spfa
洛谷板子题 负环?是有负权边的环还是一个边权之和为负的环? 还没有准确的定义(那就先忽略吧qwq 判断负环的方法: 暴力枚举/spfa/mellman—ford/奇怪的贪心/超神的搜索 可惜我只会sp ...
- php将数据写入另外一个文件
有时候,为了验证PHP的运行过程或者了解代码中的变量的使用情况,需要将变量写到另外一个文件中,方便我们查看.最近也是经常用到file_put_contents这个函数,因为只是试验用,暂时还不需要考虑 ...
- 连接(JOIN)
join 用于把来自两个或多个表的行结合起来,基于这些表之间的共同字段. INNER JOIN 从多个表中返回满足 JOIN 条件的所有行. INNER JOIN:如果表中有至少一个匹配,则返回行 L ...
- TensorFlow:谷歌图像识别网络inception-v3下载与查看结构
学习博客: # https://www.cnblogs.com/felixwang2/p/9190731.html # https://www.cnblogs.com/felixwang2/p/919 ...
- FYF的煎饼果子
利用等差数列公式就行了,可以考虑特判一下m >= n($ m, n \neq 1 $),这时一定输出“AIYAMAYA”. #include <iostream> using nam ...
- 跨域-CORS
跨域:是浏览器为了安全而做出的限制策略 浏览器请求必须遵循同源策略:同域名,同端口,同协议 cors跨域- 服务器端设置,前端直接调用 说明:后台允许前端某个站点进行访问 后台设置 Access-Co ...
- gitlab回退到某次commit——本地+远程
## 查看所有commits记录$ git log ## gitlab回退到某次commit$ git reset --hard 3018a546427e1f865524b82b488d6a2721d ...