Description

求有多少种长度为 n 的序列 A,满足以下条件:

1 ~ n 这 n 个数在序列中各出现了一次

若第 i 个数 A[i] 的值为 i,则称 i 是稳定的。序列恰好有 m 个数是稳定的

满足条件的序列可能很多,序列数对 10^9+7109+7 取模。

Input

第一行一个数 T,表示有 T 组数据。

接下来 T 行,每行两个整数 n、m。

Output

输出 T 行,每行一个数,表示求出的序列数

组合数+错排问题。

预处理\(fac[i]\)代表\(i\)的阶乘.\(inv[i]\)代表\(i\)的阶乘的逆元。

\(f[i]\)代表有\(i\)个数的错排方案数。

我们的答案就是\(C_n^{m} \times f[n-m]\)

不难理解的解释.

注意判断\(n==m\)输出\(1\)。

代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#define int long long
#define mod 1000000007
#define R register using namespace std; const int gz=1000008; int fac[gz]={1,1},inv[gz],T,f[gz]; inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
} inline int ksm(R int x,R int y)
{
R int res=1;
for(;y;y>>=1,x=x*x%mod)
if(y&1)res=res*x%mod;
return res;
} inline int C(R int n,R int m)
{
return (fac[n]%mod*inv[n-m])%mod*(inv[m])%mod;
} signed main()
{
f[2]=1;
for(R int i=2;i<=gz;i++)fac[i]=fac[i-1]*i%mod;
inv[gz]=ksm(fac[gz],mod-2);
for(R int i=gz-1;i>=0;i--)inv[i]=((i+1)*inv[i+1])%mod;
for(R int i=3;i<=gz;i++)f[i]=(i-1)*(f[i-2]+f[i-1])%mod;
in(T);
for(R int n,m;T;T--)
{
in(n),in(m);
if(n==m)puts("1");
else printf("%lld\n",((C(n,m)%mod)*(f[n-m]%mod))%mod);
}
}

组合数学+错排问题【p4071】[SDOI2016]排列计数的更多相关文章

  1. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  2. 洛谷 P4071 [SDOI2016]排列计数 题解

    P4071 [SDOI2016]排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳 ...

  3. P4071 [SDOI2016]排列计数

    题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m 个数是稳定的 满足条 ...

  4. 洛谷P4071 [SDOI2016] 排列计数 [组合数学]

    题目传送门 排列计数 题目描述 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  5. Luogu P4071 [SDOI2016]排列计数

    晚上XZTdalao给我推荐了这道数论题.太棒了又可以A一道省选题了 其实这道题也就考一个错排公式+组合数+乘法逆元 我们来一步一步分析 错排公式 通俗的说就是把n个1~n的数排成一个序列A,并使得所 ...

  6. 洛谷 P4071 [SDOI2016]排列计数

    洛谷 这是一道组合数学题. 对于一个长为n的序列,首先我们要选m个使之稳定\(C^{m}_{n}\). 且要保证剩下的序列不稳定,即错排\(D_{n-m}\). 所以答案就是:\[ANS=C^{m}_ ...

  7. P4071 [SDOI2016]排列计数 题解

    分析: 线性求逆元:https://blog.csdn.net/qq_34564984/article/details/52292502 代码: #include<cstdio> usin ...

  8. 数学【洛谷P4071】 [SDOI2016]排列计数

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  9. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  10. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

随机推荐

  1. 【NOIP 模拟赛】钟 模拟+链表

    biubiu~~ 这道题实际上就是优化模拟,就是找到最先死的让他死掉,运用时间上的加速,题解上说,要用堆优化,也就是这个意思. 对于链表,单项链表和循环链表都不常用,最常用的是双向链表,删除和插入比较 ...

  2. Vim使用小记(二)插件管理

    By francis_hao    Mar 8,2017 Vundle Vundle,全称为Vim bundle,是一个插件管理器.可以对vim插件进行安装和卸载. Vundle的安装方法看这里[参考 ...

  3. git使用笔记(二)分支与合并

    By francis_hao    Nov 18,2016 查看分支,* 表示当前所在分支 $ git branch 查看分支和最后一次提交记录 $ git branch -v 新建分支 $ git ...

  4. js保存用户名与密码

    <script>   window.onload = function(){     var oForm = document.getElementById('loginForm');   ...

  5. Codeforces Round #524 (Div. 2) D. Olya and magical square

    D. Olya and magical square 题目链接:https://codeforces.com/contest/1080/problem/D 题意: 给出一个边长为2n的正方形,每次可以 ...

  6. Git远程仓库的使用(github为例)

    一.           创建SSH key 输入命令“ssh-keygen –t rsa”创建ssh key.   由于笔者pc机已有ssh key,这里不再重复创建覆盖,仅做演示. 笔者创建好的s ...

  7. CSS盒模型之margin解析

    原文链接:http://www.jianshu.com/p/ccb534e9b588 文章分为: margin的使用 margin的叠压现象 margin的子债父偿现象 一.margin的使用 HTM ...

  8. es6+最佳入门实践(14)

    14.模版字符串 模版字符串(template string)是增强版的字符串,定义一个模版字符串需要用到反引号 let s = `这是一个模版字符串` console.log(s) 14.1.模版字 ...

  9. 计算机网络中七层,五层,四层协议;IP 地址子网划分

    七层协议: 7 应用层(http) 6 表示层(上层用户可以相互识别的数据:jpg) 5 会话层(不同主机不同线程间的通信) 4 运输层(tcp/ip:传输层提供端到端的透明数据服务)/差错控制和流量 ...

  10. 【CF1027D】Mouse Hunt(拓扑排序,环)

    题意:给定n个房间,有一只老鼠可能从其中的任意一个出现, 在第i个房间设置捕鼠夹的代价是a[i],若老鼠当前在i号房间则下一秒会移动到b[i]号, 问一定能抓住老鼠的最小的总代价 n<=2e5, ...