Description

给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。

Input

第一行两个整数N,M。

第二行有N个整数,其中第i个整数表示点i的权值。

后面N-1行每行两个整数(x,y),表示点x到点y有一条边。

最后M行每行两个整数(u,v,k),表示一组询问。

Output

M行,表示每个询问的答案。

虽然能看出来是一个树上套主席树的板子题.但是不知道公式的话,真的难写此题。

树上第\(k\)大问题与序列上的第\(k\)大问题不同.

 树上第\(k\)大问题是在父亲节点的基础上新建树,而序列上的第\(k\)大问题则是在上一位置的基础上建树.

这里直接放公式(我也没搞清楚.qwq)

\[root[x]+root[y]-root[lca_{x,y}]-root[father[lca_{x,y}]]
\]

因此直接在\(dfs\)的时候建树,并顺便预处理出来我们的倍增数组即可.

刚开始还以为要树剖套主席树,显然对我来说不可做 qwq.

代码

#include<cstdio>
#include<cctype>
#include<iostream>
#include<cstring>
#include<algorithm>
#define N 100008
#define R register
using namespace std;
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m,new_n=1,head[N],tot;
int a[N],b[N],cnt,ans;
int root[N*35],lson[N*35],rson[N*35],sum[N*35];
struct cod{int u,v;}edge[N*2];
inline void add(int x,int y)
{
edge[++tot].u=head[x];
edge[tot].v=y;
head[x]=tot;
}
void build(int lastroot,int &nowroot,int l,int r,int pos)
{
nowroot=++cnt;
sum[nowroot]=sum[lastroot]+1;
lson[nowroot]=lson[lastroot];
rson[nowroot]=rson[lastroot];
if(l==r)return;
int mid=(l+r)>>1;
if(pos<=mid)build(lson[lastroot],lson[nowroot],l,mid,pos);
else build(rson[lastroot],rson[nowroot],mid+1,r,pos);
}
int query(int x,int y,int la,int lca_fa,int l,int r,int k)
{
if(l>=r)return l;
int tmp=sum[lson[x]]+sum[lson[y]]-sum[lson[la]]-sum[lson[lca_fa]];
int mid=(l+r)>>1;
if(tmp>=k) return query(lson[x],lson[y],lson[la],lson[lca_fa],l,mid,k);
else return query(rson[x],rson[y],rson[la],rson[lca_fa],mid+1,r,k-tmp);
}
int depth[N],fath[N][21];
void dfs1(int u,int fa)
{
depth[u]=depth[fa]+1;
build(root[fa],root[u],1,new_n,a[u]);
fath[u][0]=fa;
for(R int i=1;(1<<i)<=depth[u];i++)
fath[u][i]=fath[fath[u][i-1]][i-1];
for(R int i=head[u];i;i=edge[i].u)
{
if(edge[i].v==fa)continue;
dfs1(edge[i].v,u);
}
}
inline int lca(int x,int y)
{
if(depth[x]>depth[y])swap(x,y);
for(R int i=17;i>=0;i--)
if(depth[x]+(1<<i)<=depth[y])
y=fath[y][i];
if(x==y)return y;
for(R int i=17;i>=0;i--)
{
if(fath[x][i]==fath[y][i])continue;
x=fath[x][i],y=fath[y][i];
}
return fath[x][0];
}
int main()
{
in(n),in(m);
for(R int i=1;i<=n;i++)in(a[i]),b[i]=a[i];
sort(b+1,b+n+1);
for(R int i=2;i<=n;i++)
if(b[new_n]!=b[i])
b[++new_n]=b[i];
for(R int i=1;i<=n;i++)
a[i]=lower_bound(b+1,b+new_n+1,a[i])-b;
for(R int i=1,x,y;i<n;i++)
{
in(x),in(y);
add(x,y),add(y,x);
}
dfs1(1,0);
for(R int i=1,x,y,k,la;i<=m;i++)
{
in(x),in(y),in(k);
x^=ans;la=lca(x,y);
ans=b[query(root[x],root[y],root[la],root[fath[la][0]],1,new_n,k)];
printf("%d\n",ans);
}
}

主席树+LCA【p2633 (bzoj2588】 Count on a tree的更多相关文章

  1. 主席树+dfs SPOJ BZOJ2588 Count on a tree

    这道题我由于智障错误导致一直错. 在树上建主席树,加上lca思想,很简单. #include<bits/stdc++.h> using namespace std; ; struct no ...

  2. 洛谷P2633/bzoj2588 Count on a tree (主席树)

    洛谷P2633/bzoj2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K ...

  3. Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)

    Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...

  4. 【bzoj2588/P2633】count on a tree —— LCA + 主席树

    (以下是luogu题面) 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问 ...

  5. 【BZOJ2588】Spoj 10628. Count on a tree 主席树+LCA

    [BZOJ2588]Spoj 10628. Count on a tree Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lasta ...

  6. [bzoj2588][count on a tree] (主席树+lca)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  7. [Bzoj2588]Count on a tree(主席树+LCA)

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  8. [BZOJ2588]Count on a tree(LCA+主席树)

    题面 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始为0,即第一个询问 ...

  9. 【BZOJ2588】Count on a tree 题解(主席树+LCA)

    前言:其实就是主席树板子啦……只不过变成了树上的查询 -------------------------- 题目链接 题目大意:求树上$u$到$v$路径第$k$大数. 查询静态区间第$k$大肯定是用主 ...

随机推荐

  1. BZOJ5322 [Jxoi2018]排序问题 【贪心】

    题目链接 BZOJ5322 题解 意思就是使有序的排列尽量少 就是使相同的数尽量少 然后大力贪心即可 #include<algorithm> #include<iostream> ...

  2. 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态

    我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...

  3. BZOJ 4318: OSU! 期望概率dp && 【BZOJ3450】【Tyvj1952】Easy 概率DP

    这两道题是一样的...... 我就说一下较难的那个 OSU!: 这道15行的水题我竟然做了两节课...... 若是f[i][0]=(1-p)*f[i-1][0]+(1-p)*f[i-1][1],f[i ...

  4. java AWT repaint paint update 方法

    paint(Graphic g): awt调用这个方法有2种形式.程序驱动方式和系统驱动方式. 在系统驱动的情况下(比如界面第一次显示组件),系统会判断组件的显示区域,然后向事件分发线程发出调用pai ...

  5. 洛谷P1346 电车

    P1346 电车 236通过 757提交 题目提供者yeszy 标签图论福建省历届夏令营 难度普及/提高- 提交该题 讨论 题解 记录 最新讨论 解不好啊,快疯了!!哪位大… 求解:为何除了-1的点之 ...

  6. arraylist和array的不同之处

    https://www.cnblogs.com/wangbin2188/p/6524200.html

  7. c++ 公有继承的赋值兼容规则

    赋值兼容规则是指在需要基类对象的任何地方都可以使用公有派生类的对象来替代.通过公有继承,派生类得到了基类中除构造函数.析构函数之外的所有成员,而且所有成员的访问控制属性也和基类完全相同.这样,公有派生 ...

  8. C# 序列化理解 2(转)

    一.概述 序列化是把对象转变成流.相反的过程就是反序列化. 哪些场合用到这项技术呢? 1. 把对象保存到本地,下次运行程序时恢复这个对象. 2. 把对象传送到网络的另一台终端上,然后在此终端还原这个对 ...

  9. eclipse怎样快速的给代码段添加try catch

    打开要进行异常处理的java代码页面. 选中要添加try..catch的代码段,然后点击鼠标右键,选择[Sourround With]选项. 然后选择[Try/Catch Block]或者[6 try ...

  10. 【Foreign】划分序列 [线段树][DP]

    划分序列 Time Limit: 20 Sec  Memory Limit: 256 MB Description Input Output 仅一行一个整数表示答案. Sample Input 9 4 ...