Reviewing notes 2.1 of Mathematical analysis
Chapter2 Numerical sequence and function
Cartesian product set
If S and T are sets,then the cartesian product set S×T is formed by taking all ordered pairs (p,q) where p∈S and q∈T.
Relations,functions
Any subject f of the cartesian product S×T is called a relation between S and T. A relation f is called a function if for every p∈S such that (p,q)∈f.This element q is denoted by f(p).The set S is the domain of f and the set T is the codomain of f. A function f from a set S into E1 is a real valued function. If for every q∈T there is some p∈S such that q=f(p), then we say f is onto T. If for any a,b∈S,a≠b implies that f(a)≠f(b), then we say f is univalent.
Numerical sequence
A numerical sequence is a special type of real function that its domain is N+,denoted as {Xn}.Therefore we have Xn=f(n),n∈N+.
Reviewing notes 2.1 of Mathematical analysis的更多相关文章
- Lecture notes of Mathematical analysis
Lecture notes of Mathematical analysis Preliminary theory Teaching purpose: Mathematical analysis is ...
- 《Principles of Mathematical Analysis》-chaper1-实数系与复数系
今天我们开始简单的介绍数学分析这门课程,参考教材是Walter Rudin著的<Principles of Mathematical Analysis> 对于一门新课你最开始可能会问的是: ...
- "Mathematical Analysis of Algorithms" 阅读心得
"Mathematical Analysis of Algorithms" 阅读心得 "Mathematical Analysis of Algorithms" ...
- 《Mathematical Analysis of Algorithms》中有关“选择第t大的数”的算法分析
开头废话 这个问题是Donald.E.Knuth在他发表的论文Mathematical Analysis of Algorithms中提到的,这里对他的算法分析过程给出了更详细的解释. 问题描述: 给 ...
- Notes on Probabilistic Latent Semantic Analysis (PLSA)
转自:http://www.hongliangjie.com/2010/01/04/notes-on-probabilistic-latent-semantic-analysis-plsa/ I hi ...
- Reviewing notes 1.1 of Advanced algebra
♦Linear map Definition Linear map A linear map from vector space V to W over a field F is a function ...
- Reviewing notes 1.1 of Analytic geometry
Chapter 1 Vector Algebra ♦ Vector Space Vector and vector space A vector is described as a quantity ...
- 《Mathematical Analysis of Algorithms》中有关“就地排列”(In Situ Permutation)的算法分析
问题描述 把数列\((x_1,x_2,\cdots,x_n)\)变换顺序为\((x_{p(1)},x_{p(2)},\cdots,x_{p(n)})\),其中\(p\)是\(A=\{1,2,3,\cd ...
- Notes(一)
Numerous experimental measurements in spatially complex systems have revealed anomalous diffusion in ...
随机推荐
- 华为部分真机调试无法显示log问题解决
真机测试时,部分华为手机无法获取全部的log信息.或者说无法获取Error以下级别的log信息.比如P7 这是因为部分华为机出厂默认log设置为关闭状态,因此只能获取Error以上级别的log信息.蛋 ...
- Spring使用标签注解来简化xml书写
一.步骤 在配置文件中,引入context命名空间 <beans xmlns="http://www.springframework.org/schema/beans" xm ...
- Python之面向过程和面向对象的区别
一.面向过程 1.面向过程:核心是过程二字,过程指的是解决问题的步骤,好比如设计一条流水线,是一种机械式的思维方式. 就是程序从上到下一步步执行,一步步从上到下,从头到尾的解决问题 .基本设计思路就是 ...
- C#中的IEnumerator、foreach、yield
[C#中的IEnumerator.foreach.yield] 1.IEnumerator,是一个接口,它的方法如下: 2.foreach语句,在编译后会变成IEnumerator的调用: 3.yie ...
- Python_14-绘图
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- SpringBoot16 MockMvc的使用、JsonPath的使用、请求参数问题、JsonView、分页查询参数、JsonProperty
1 MockMvc的使用 利用MockMvc可以快速实现MVC测试 坑01:利用MockMvc进行测试时应用上下文路径是不包含在请求路径中的 1.1 创建一个SpringBoot项目 项目脚手架 1. ...
- Opencv图像变成灰度图像、取反图像
#include <iostream>#include <opencv2/opencv.hpp> using namespace cv;using namespace std; ...
- 932F Escape Through Leaf
传送门 题目大意 https://www.luogu.org/problemnew/show/CF932F 分析 我们可以从叶子向根每次插入b和ans 所以我们不难发现就是相当于插入线段 于是李超树+ ...
- SQL语句学习积累·数据的操作
数据的操作 select 取表中前五条数据 select top 5 from table_name 取表中前50%的数据 select top 50 percent from table_name ...
- Linux下面rpm命令和mount命令详解
在Linux下面我们经常会安装一些软件包,还有挂载命令.接下来,我们通过一些实例来演示这些命令的使用.. 第一步:我们先在linux下面挂载光盘,先进入到根目录,然后切换到根下面的/mnt目录,因为/ ...