BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】
题目
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意
两点u,v,存在一条u到v的有向路径或者从v到u的有向路径。若G’=(V’,E’)满足V’?V,E’是E中所有跟V’有关的边,
则称G’是G的一个导出子图。若G’是G的导出子图,且G’半连通,则称G’为G的半连通子图。若G’是G所有半连通子图
中包含节点数最多的,则称G’是G的最大半连通子图。给定一个有向图G,请求出G的最大半连通子图拥有的节点数K
,以及不同的最大半连通子图的数目C。由于C可能比较大,仅要求输出C对X的余数。
输入格式
第一行包含两个整数N,M,X。N,M分别表示图G的点数与边数,X的意义如上文所述接下来M行,每行两个正整
数a, b,表示一条有向边(a, b)。图中的每个点将编号为1,2,3…N,保证输入中同一个(a,b)不会出现两次。N ≤1
00000, M ≤1000000;对于100%的数据, X ≤10^8
输出格式
应包含两行,第一行包含一个整数K。第二行包含整数C Mod X.
输入样例
6 6 20070603
1 2
2 1
1 3
2 4
5 6
6 4
输出样例
3
3
题解
一开始被题目吓到了,仔细读题才知道原来就是一个tarjan缩点
最大半连通,其实就是诱导子图中,每对点至少能从其中一个到达另一个。
强联通分量里的点相互到达,缩点。
缩完后是一个DAG图,最大的所求图就是最长的路径了【只有同一条路径长的点满足要求】
要注意的就是统计时要防止由于缩点后新建的重边而重复计算,我用了一个vis数组表示当前点最后被哪个点访问过
具体看代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
using namespace std;
const int maxn = 100005,maxm = 1000005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N,M,P,h[maxn],ne = 0,head[maxn],nedge = 0;
struct EDGE{int to,nxt;}ed[maxm],edge[maxm];
inline void build(int u,int v){ed[ne] = (EDGE){v,h[u]}; h[u] = ne++;}
inline void add(int u,int v){edge[nedge] = (EDGE){v,head[u]}; head[u] = nedge++;}
int Scc[maxn],scci = 0,st[maxn],top = 0,low[maxn],dfn[maxn],cnt = 0,Siz[maxn];
void dfs(int u){
dfn[u] = low[u] = ++cnt;
st[++top] = u; int to;
Redge(u){
if (!dfn[to = ed[k].to]) dfs(to);
if (dfn[to] && !Scc[to]) low[u] = min(low[u],low[to]);
}
if (dfn[u] == low[u]){
scci++;
do {Scc[st[top]] = scci; Siz[scci]++;}while (st[top--] != u);
}
}
void tarjan(){REP(i,N) if (!dfn[i]) dfs(i);}
queue<int> q;
int f[maxn],g[maxn],inde[maxn],vis[maxn];
void solve(){
memset(head,-1,sizeof(head));
int u,to;
REP(i,N){
u = Scc[i];
Redge(i) if (Scc[to = ed[k].to] != u) add(u,Scc[to]),inde[Scc[to]]++;
}
REP(i,scci) if (!inde[i]) q.push(i),g[i] = 1;
while (!q.empty()){
u = q.front(); q.pop();
f[u] += Siz[u];
for (int k = head[u]; k != -1; k = edge[k].nxt){
if (!(--inde[to = edge[k].to])) q.push(to);
if (vis[to] != u){
vis[to] = u;
if (f[to] < f[u]) f[to] = f[u],g[to] = g[u];
else if (f[to] == f[u]) g[to] = (g[to] + g[u]) % P;
}
}
}
int ans = 0,gmax = -1;
REP(i,scci)
if (f[i] > gmax) {ans = g[i]; gmax = f[i];}
else if (f[i] == gmax) ans = (ans + g[i]) % P;
printf("%d\n%d\n",gmax,ans);
}
int main(){
memset(h,-1,sizeof(h));
N = RD(); M = RD(); P = RD(); int a,b;
while (M--) a = RD(),b = RD(),build(a,b);
tarjan();
solve();
return 0;
}
BZOJ1093 [ZJOI2007]最大半连通子图 【tarjan缩点 + DAG最长路计数】的更多相关文章
- bzoj1093: [ZJOI2007]最大半连通子图 scc缩点+dag上dp
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)
发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...
- [luogu2272 ZJOI2007] 最大半连通子图 (tarjan缩点 拓扑排序 dp)
传送门 题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向 ...
- BZOJ1093: [ZJOI2007]最大半连通子图(tarjan dp)
题意 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G' ...
- LG2272/BZOJ1093 「ZJOI2007」最大半连通子图 Tarjan缩点+DAG求最长链
问题描述 LG2272 BZOJ1093 题解 观察半联通的定义,发现图中的一些结点,构成的链一定是一个半联通子图. 此时存在的环可能会干扰求解,于是\(\mathrm{Tarjan}\)缩点. 于是 ...
- [ZJOI2007]最大半连通子图 (Tarjan缩点,拓扑排序,DP)
题目链接 Solution 大概是个裸题. 可以考虑到,如果原图是一个有向无环图,那么其最大半联通子图就是最长的一条路. 于是直接 \(Tarjan\) 缩完点之后跑拓扑序 DP就好了. 同时由于是拓 ...
- BZOJ 1093 [ZJOI2007]最大半连通子图 - Tarjan 缩点
Description 定义一个半联通图为 : 对任意的两个点$u, v$,都有存在一条路径从$u$到$v$, 或从$v$到$u$. 给出一个有向图, 要求出节点最多的半联通子图, 并求出方案数. ...
- 2018.11.06 bzoj1093: [ZJOI2007]最大半连通子图(缩点+拓扑排序)
传送门 先将原图缩点,缩掉之后的点权就是连通块大小. 然后用拓扑排序统计最长链数就行了. 自己yyyyyy了一下一个好一点的统计方法. 把所有缩了之后的点都连向一个虚点. 然后再跑拓扑,这样最后虚点的 ...
- BZOJ 1093: [ZJOI2007]最大半连通子图( tarjan + dp )
WA了好多次... 先tarjan缩点, 然后题意就是求DAG上的一条最长链. dp(u) = max{dp(v)} + totu, edge(u,v)存在. totu是scc(u)的结点数. 其实就 ...
随机推荐
- Andrew Ng Machine Learning Coursera学习笔记
课程记录笔记如下: 1.目前ML的应用 包括:数据挖掘database mining.邮件过滤email anti-spam.机器人autonomous robotics.计算生物学computati ...
- Python3爬虫(七) 解析库的使用之pyquery
Infi-chu: http://www.cnblogs.com/Infi-chu/ pyquery专门针对CSS和jQuery的操作处理 1.初始化字符串初始化 from pyquery impor ...
- 杭电 1003 Max Sum (动态规划)
参考:https://www.cnblogs.com/yexiaozi/p/5749338.html #include <iostream> #include <cstdio> ...
- [POJ 1004] Financial Management C++解题
参考:https://www.cnblogs.com/BTMaster/p/3525008.html #include <iostream> #include <cstdio> ...
- Educational Codeforces Round 47 (Rated for Div. 2) :D. Relatively Prime Graph
题目链接:http://codeforces.com/contest/1009/problem/D 解题心得: 题意就是给你n个点编号1-n,要你建立m条无向边在两个互质的点之间,最后所有点形成一个连 ...
- HDU暑假多校第八场G-Card Game
一.题意 给出N个卡牌,卡牌的正反两面具有两个数字,取值范围为[1,2*n],给出若干个默认正面向上的卡牌,求最小反转多少张卡牌可以使得,每张卡牌朝上的面上都有一个不同的数字,同时满足最小反转次数的反 ...
- HDU暑假多校第八场J-Taotao Picks Apples
一.题意 给定一个序列,之后给出若干个修改,修改的内容为在原序列的基础上,将某一位元素的值改成给定的值<每次修改相互独立,不保存修改后的结果>.之后询问,在选择第一位元素的情况下,最长递增 ...
- 扩展报表-JavaSet
前言 使用商业分析中的扩展报表平台,可以很方便的进行数据分析,进行图表化直观展示.一般情况下使用SQL数据集进行SQL的编写,进而配合扩展报表平台进行数据分析图表的绘制,但SQL数据集针对固定的参数进 ...
- 3468-A Simple Problem with Integers 线段树(区间增减,区间求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 110077 ...
- L007- linux系统优化进阶课堂小节
首先把这节课所讲的大概引锁一下,然后下面详细列举. 1.填加普通用户,通过sudo管理. 2.更改默认的SSH服务端口及禁止root用户远程连接. 3.定时自动更新服务器时间 4.关闭防火墙(ipta ...