分析:

n行

每行包含两个整数p r;意思是p从到r

不能有交叉的路

p刚好从1->n,

可看做下标,到的地方看做值

就转化为了最长上升子序列的问题

此题难点,怎么将其转化为LIS问题

#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <string.h>
using namespace std;
const int inf=0x7fffffff;
const int maxn=;
int road[maxn];
int dp[maxn]; int main()
{
int n;
int from,to;
int c=;
while(scanf("%d",&n)!=EOF)
{ fill(dp,dp+n,inf);
for(int i=;i<n;i++)
{
scanf("%d%d",&from,&to);
road[from]=to;
}
for(int i=;i<=n;i++)//因为题目输入的原因,这里的下标从1开始。
*lower_bound(dp,dp+n,road[i])=road[i];
int len=lower_bound(dp,dp+n,inf)-dp;
if(len==)
{
cout<<"Case "<<c++<<":"<<endl;
cout<<"My king, at most 1 road can be built."<<endl;
}
else
{
cout<<"Case "<<c++<<":"<<endl;
cout<<"My king, at most "<<len<<" roads can be built."<<endl;
}
cout<<endl;
}
return ;
}

HDU1025---(LIS 最长上升子序列 的应用)的更多相关文章

  1. 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列

    出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...

  2. POJ - 3903 Stock Exchange(LIS最长上升子序列问题)

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u   Descripti ...

  3. hdu 5256 序列变换(LIS最长上升子序列)

    Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...

  4. POJ 3903 Stock Exchange (E - LIS 最长上升子序列)

    POJ 3903    Stock Exchange  (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...

  5. 动态规划模板1|LIS最长上升子序列

    LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...

  6. POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)

    POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...

  7. LIS最长上升子序列O(n^2)与O(nlogn)的算法

    动态规划 最长上升子序列问题(LIS).给定n个整数,按从左到右的顺序选出尽量多的整数,组成一个上升子序列(子序列可以理解为:删除0个或多个数,其他数的顺序不变).例如序列1, 6, 2, 3, 7, ...

  8. LIS 最长递增子序列

    一.最长公共子序列 经典的动态规划问题,大概的陈述如下: 给定两个序列a1,a2,a3,a4,a5,a6......和b1,b2,b3,b4,b5,b6.......,要求这样的序列使得c同时是这两个 ...

  9. 动态规划——E (LIS())最长上升子序列

    E - LIS Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Stat ...

  10. LIS 最长递增子序列问题

    一,    最长递增子序列问题的描述 设L=<a1,a2,…,an>是n个不同的实数的序列,L的递增子序列是这样一个子序列Lin=<aK1,ak2,…,akm>,其中k1< ...

随机推荐

  1. gitk中文乱码问题处理

    执行了 git config --global gui.encoding utf- 查看 %USERPROFILE%\.gitconfig 文件中也有 [gui] encoding = utf-8 在 ...

  2. javac一次性编译多个包下的.java文件

    如题是我想要知道的,然后在网上搜了一下 下面是在某些帖子里看到别人说的只言片语 =========================================================== ...

  3. mcrouter facebook 开源的企业级memcached代理

    原文地址:https://code.facebook.com/posts/296442737213493/introducing-mcrouter-a-memcached-protocol-route ...

  4. 失败的尝试,使用继承扩展数组,以及ES6的必要性

    我们都知道直接在原生对象上扩展对象是很不好的.所以prototype这样的库广受非议. 一些库,比如lodash采用了工具包形式的扩展方式,绕开了对象的继承. 由于es6的class的出现,我尝试以A ...

  5. Python进程、线程、协程及IO多路复用

    详情戳击下方链接 Python之进程.线程.协程 python之IO多路复用

  6. win10子系统Ubuntu18.04下安装图形界面

    前提:windows 10 已经安装WSL(windows subsystem for linux),并能正确运行Bash. 要想使用Linux的图形用户界面通常有两种方法,一种是使用X-Window ...

  7. Python 3基础教程18-获取用户键盘输入

    有时候,我们需要获取用户的键盘输入的信息,然后得到信息,拿去做一些事情. 请看下面的demo.py # 练习如何通过键盘获取用户输入 x = input('What is your name?') p ...

  8. Zabbix_agentd 启动报错

    C:\zabbix>c:\Zabbix\zabbix_agentd.exe -i -c c:\Zabbix\zabbix_agentd.conf zabbix_agentd.exe [1144] ...

  9. python学习总结----简单数据结构

    mini-web服务器 - 能够完成简单的请求处理 - 使用http协议 - 目的:加深对网络编程的认识.为后面阶段学习web做铺垫 简单数据结构 - 排列组合 import itertools # ...

  10. Leetcode 3. Longest Substring Without Repeating Characters (Medium)

    Description Given a string, find the length of the longest substring without repeating characters. E ...