题面

题目描述
$ Mayan puzzle $是最近流行起来的一个游戏。游戏界面是一个 \(7行 \times 5列\)的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上。游戏通关是指在规定的步数内消除所有的方块,消除方块的规则如下:

1 、每步移动可以且仅可以沿横向(即向左或向右)拖动某一方块一格:当拖动这一方块时,如果拖动后到达的位置(以下称目标位置)也有方块,那么这两个方块将交换位置(参见输入输出样例说明中的图\(6\)到图\(7\));如果目标位置上没有方块,那么被拖动的方块将从原来的竖列中抽出,并从目标位置上掉落(直到不悬空,参见下面图1 和图2);

2 、任一时刻,如果在一横行或者竖列上有连续三个或者三个以上相同颜色的方块,则它们将立即被消除(参见图1 到图3)。

注意:

a) 如果同时有多组方块满足消除条件,几组方块会同时被消除(例如下面图\(4\),三个颜色为\(1\)的方块和三个颜色为$2 $的方块会同时被消除,最后剩下一个颜色为\(2\)的方块)。

b) 当出现行和列都满足消除条件且行列共享某个方块时,行和列上满足消除条件的所有方块会被同时消除(例如下面图5 所示的情形,5 个方块会同时被消除)。

3 、方块消除之后,消除位置之上的方块将掉落,掉落后可能会引起新的方块消除。注意:掉落的过程中将不会有方块的消除。

上面图1 到图 3 给出了在棋盘上移动一块方块之后棋盘的变化。棋盘的左下角方块的坐标为(0, 0 ),将位于(3, 3 )的方块向左移动之后,游戏界面从图 1 变成图 2 所示的状态,此时在一竖列上有连续三块颜色为4 的方块,满足消除条件,消除连续3 块颜色为4 的方块后,上方的颜色为3 的方块掉落,形成图 3 所示的局面。

输入输出格式
输入格式:
共 6 行。

第一行为一个正整数\(n\),表示要求游戏通关的步数。

接下来的\(5\)行,描述$ 7 \times 5$的游戏界面。每行若干个整数,每两个整数之间用一个空格隔开,每行以一个$0 $结束,自下向上表示每竖列方块的颜色编号(颜色不多于\(10\)种,从\(1\)开始顺序编号,相同数字表示相同颜色)。

输入数据保证初始棋盘中没有可以消除的方块。

输出格式:
如果有解决方案,输出\(n\)行,每行包含\(3\)个整数\(x,y,g\),表示一次移动,每两个整数之间用一个空格隔开,其中\((x,y)\)表示要移动的方块的坐标,\(g\)表示移动的方向,\(1\)表示向右移动,\(−1\)表示向左移动。注意:多组解时,按照xx为第一关健字,\(y\)为第二关健字,\(1\)优先于\(−1\),给出一组字典序最小的解。游戏界面左下角的坐标为\((0,0)\)。

如果没有解决方案,输出一行,包含一个整数\(-1\)。

输入输出样例
输入样例#1:
3
1 0
2 1 0
2 3 4 0
3 1 0
2 4 3 4 0
输出样例#1:
2 1 1
3 1 1
3 0 1

说明
【输入输出样例说明】
按箭头方向的顺序分别为图\(6\)到图\(11\)
样例输入的游戏局面如上面第一个图片所示,依次移动的三步是:\((2,1)\)处的方格向右移动,\((3,1)\)处的方格向右移动,\((3,0)\)处的方格向右移动,最后可以将棋盘上所有方块消除。

【数据范围】
对于\(30%\)的数据,初始棋盘上的方块都在棋盘的最下面一行;
对于\(100%\)的数据,\(0<n≤5\) 。

思路

觉得这道题写得挺有意思的,思路有空再补吧233,代码也没注释……

代码

#include<iostream>
#include<cstdio>
#include<cstdlib>
#define re register
using namespace std;
//全局变量
int n;//步数
int step[10][10][10];//dfs状态回溯
struct result_ans {
    int x,y,way;
}ans[10];//答案存储
// Mayan游戏实现部分
struct Mayan_puzzle {
    int a[10][10];//color <=10
    int ax[105],ay[105],T;
    inline bool go() {    //游戏进行-判断是否可以消除并消除
        T=0;    int flag=0;
        for(re int i=0;i<=2;i++)
            for(re int j=0;j<=6;j++) if(a[i][j]) {
            if(a[i][j]==a[i+1][j]&&a[i+1][j]==a[i+2][j]) {
                flag = 1; ax[++T] = i; ay[T] = j;
                ax[++T]=i+1; ay[T]=j; ax[++T]=i+2; ay[T]=j;
            }
        }
        for(re int i=0;i<=4;i++)
            for(re int j=0;j<=4;j++) if(a[i][j]) {
            if(a[i][j]==a[i][j+1]&&a[i][j+1]==a[i][j+2]) {
                flag = 1; ax[++T] = i; ay[T] = j;
                ax[++T]=i; ay[T]=j+1; ax[++T]=i; ay[T]=j+2;
            }
        }
        for(re int i=1;i<=T;i++) a[ax[i]][ay[i]]=0;
        return flag;
    }
    inline void down() {    //下降处理-悬空方块下落
        for(re int i=0;i<=4;i++)
            for(re int j=1;j<=6;j++) if(a[i][j])    {
            int k=j;
            while(a[i][k-1]==0) {
                swap(a[i][k-1],a[i][k]);
                if(k==1) break; else k--;
            }
        }
    }
    inline bool check() {   //结束判断-判断是否全部消除
        for(re int i=0;i<=4;i++)
            if(a[i][0]) return false;
        return true;
    }
};
struct Mayan_puzzle p;
// in / out 输入输出
inline void getin() {
    int color=0,T;  scanf("%d",&n);
    for(re int i=0;i<=4;i++) {  T=-1;
        while(scanf("%d",&color)&&color) p.a[i][++T]=color;
    }
}
inline void print() {
    for(re int i=1;i<=n;i++)
        printf("%d %d %d\n",ans[i].x,ans[i].y,ans[i].way);
}
// dfs 搜索部分
void dfs(int cur) {
    if(cur>n) {
        if(p.check()) {
            print();//out
            exit(0);//退出程序
        }
        return;
    }
    for(re int i=0;i<=4;i++)
        for(re int j=0;j<=6;j++)
    {
        if(p.a[i][j]&&i<=3) {   //right
            for(re int k=0;k<=4;k++)
                for(re int l=0;l<=6;l++)
                    step[cur][k][l] = p.a[k][l];
            swap( p.a[i][j] , p.a[i+1][j] );
            ans[cur].x =i; ans[cur].y =j; ans[cur].way =1;
            p.down();
            while( p.go())  p.down();
            dfs(cur+1);
            for(re int k=0;k<=4;k++)
                for(re int l=0;l<=6;l++)
                    p.a[k][l] = step[cur][k][l];
        }
        if(p.a[i][j]&&p.a[i-1][j]==0&&i>=1) {   //left
            for(re int k=0;k<=4;k++)
                for(re int l=0;l<=6;l++)
                    step[cur][k][l] = p.a[k][l];
            swap( p.a[i][j] , p.a[i-1][j] );
            ans[cur].x =i; ans[cur].y =j; ans[cur].way =-1;
            p.down();
            while( p.go())  p.down();
            dfs(cur+1);
            for(re int k=0;k<=4;k++)
                for(re int l=0;l<=6;l++)
                    p.a[k][l] = step[cur][k][l];
        }
    }
}
//main函数
int main() {
    getin();//in
    dfs(1);//dfs
    printf("-1\n");//无解时输出-1
    return 0;
}

[题目] Luogu P1312 Mayan游戏的更多相关文章

  1. Luogu P1312 Mayan游戏(搜索)

    P1312 Mayan游戏 题意 题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个\(7\)行\(\times 5\)列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必 ...

  2. [luogu P1312]Mayan游戏

    其实就是一道锻炼码力的简单题-- 看到题目中的\(0<x\leqslant 5\)也就知道是爆搜了吧( 我们仿照写游戏的方法多写几个函数,能够有效降低错误率(确信 我们写出大致的搜索流程来: 如 ...

  3. 洛谷P1312 Mayan游戏

    P1312 Mayan游戏 题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他 ...

  4. [NOIP2011] 提高组 洛谷P1312 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  5. P1312 Mayan游戏

    题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游戏通关是指在规定 ...

  6. 洛古 P1312 Mayan游戏(dfs+剪枝)

    题目链接 这道题和俄罗斯方块很像 很明显,我们可以看出这是一个dfs,但是,我们需要几条剪枝: 1.如果只剩下1个或2个同样颜色的方块,那么直接退出 2.相同的块不用交换 3.注意优先性,优先左边换右 ...

  7. 洛谷 P1312 Mayan游戏

    题解:搜索+模拟 剪枝: 最优性剪枝:x从小到大,y从小到大,第一次搜到的就是字典序最小 的最优解. 最优性剪枝:把一个格子和左边格子交换,和左边格子和右边格 子交换是等价的,显然让左边格子和右边交换 ...

  8. [Luogu 1312] noip11 Mayan游戏

    [Luogu 1312] noip11 Mayan游戏 Problem: Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即 ...

  9. 洛谷P1312 [NOIP2011提高组Day1T3]Mayan游戏

    Mayan游戏 题目描述 Mayan puzzle是最近流行起来的一个游戏.游戏界面是一个 7 行5 列的棋盘,上面堆放着一些方块,方块不能悬空堆放,即方块必须放在最下面一行,或者放在其他方块之上.游 ...

随机推荐

  1. [javaSE] 看博客学习java并发编程

    共享性 多线程操作同一个数据,产生线程安全问题 新建一个类ShareData 设计一个int 型的成员变量count 设计一个成员方法addCount(),把count变量++ 在main函数中开启多 ...

  2. 创建一个jdbc连接

    本文介绍如何建立一个jdbc连接进行数据库查询操作. 创建一个java工程,导入jar包. 作者使用mysql数据库,建立jdbc连接需要mysql数据库驱动jar包和jdbc连接jar包. 建立jd ...

  3. ifream框架角色切换

    js受制于单个页面,用ifream框架做web系统,会遇到角色切换菜单刷新的问题,我就来讲一下我的思路: 用户登录时将用户角色放入session中,以角色id为key,权限为值,角色切换时将相应角色i ...

  4. RequestDispatcher.forward转发与HttpServletResponse.sendRedirect重定向

    下面是HttpServletResponse.sendRedirect 方法实现的请求重定向与RequestDispatcher.forward 方法实现的请求转发的总结比较:(1)RequestDi ...

  5. springboot 初识

    从实用主义来学习springboot的话,那我们期望的就是首先知道 1 他是个什么东西 2 我们为什么要用他,他能带来什么样的好处 3 如何快速上手 简单来讲,springboot你可以理解成spri ...

  6. Code Signal_练习题_arrayMaxConsecutiveSum

    Given array of integers, find the maximal possible sum of some of its k consecutive elements. Exampl ...

  7. 【代码笔记】iOS-UIAlertView3秒后消失

    一,效果图. 二,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the ...

  8. 【代码笔记】iOS-NSJSONSerializationDemo

    一,代码. - (void)viewDidLoad { [super viewDidLoad]; // Do any additional setup after loading the view. ...

  9. 3D-爱心

    520把爱心送给她 用自己独有的方式表白,也是爱的一种体现! 所以呢,我就利用自己现有的知识,做了一个3D爱心! 今天是5月21日,博主在这里希望所有看到这个博客的朋友们能够拥有自己美好的爱情! 同时 ...

  10. 2016年CSDN十大博客之星评选,快来投票哈~

    11-28号开始投票,现在处于公示期.这是我的投票链接 : http://blog.csdn.net/vote/candidate.html?username=qq_25827845 重在参与,各位小 ...