Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).

Example:

Input: S = "ADOBECODEBANC", T = "ABC"
Output: "BANC"

Note:

  • If there is no such window in S that covers all characters in T, return the empty string "".
  • If there is such window, you are guaranteed that there will always be only one unique minimum window in S.

Idea 1. Sliding window with two pointers. The right pointer to expand the window while fixing the left window and the left pointer to shrink the given window while fixing the right window. At any time only one of these pointer move and the other remains fixed. 经典的滑动窗口的方法, 用左右2各点滑动形成的窗口中找寻符合条件的窗口。这题麻烦的地方是如何快速的判断符合条件的窗口(letterSeen == T.length),包含T的所有字母的最小窗口, 包含T的所有字母的窗口字母个数和T至少一样长。T中可能有重复字母,需要用map来记下每个字母出现的个数。

如何update letterSeen?

  ++letterSeen if window[right] <= letterT[right] after ++window[right]

  --letterSeen if window[left] < letterT[left] after --window[left]

Time complexity: O(S + T), in the worst case each element is visited twice, once by right pointer, once by the left pointer. (exactly loop time 2 * S + T)

Space complexity: O(T + S), depends on the dictionary size

1.a.建立2个map, 第一个letterT用来记下T中字母出现个数,第二个window记录滑动窗口中字母出现的个数, 判断窗口中出现的字母是不是符合条件的,比如s = "aab", t = "ab", letterT['a' - 'A'] = 1,  当right = 0, window['a'-'A'] = 1 <= 2, T中的字母扫了一个,letterSeen = 1; 当right = 1, window['a'-'A'] = 2 > letterT['a' - 'A'], 扫到的比T中还多,算是多余的,就不能加letterSeen, letterSeen = 1; 当right = 2,window['b'-'A'] = 1 <= letter['b'-'A'], letterSeen = 2 == T.length, "aab"是第一个符合条件的窗口;再固定右边活动左边来找是不是还有更小的,window['a'-'A'] = 1, letterSeen == T.length, "ab"符合条件; 继续右滑,window['a'-'A'] = 0 < T['a' - 'A'], letterSeen = 1 不符合条件。

++letterSeen if window[c-'A'] <= T[c-'A']

Note.

  window[c-'A']用作字母为key的map很方便

滑动左边不要忘记 ++left

 class Solution {
public String minWindow(String s, String t) {
int[] letterT = new int[256];
for(int i = 0; i < t.length(); ++i) {
++letterT[t.charAt(i) - 'A'];
} int[] window = new int[256];
int start = -1;
int letterSeen = 0;
int minLen = Integer.MAX_VALUE;
for(int left = 0, right = 0; right < s.length(); ++right) {
int keyRight = s.charAt(right) - 'A';
++window[keyRight];
if(window[keyRight] <= letterT[keyRight]) {
++letterSeen;
while(letterSeen == t.length()) {
if(right - left + 1 < minLen) {
minLen = right - left + 1;
start = left;
}
int keyLeft = s.charAt(left) - 'A';
--window[keyLeft];
if(window[keyLeft] < letterT[keyLeft]) {
--letterSeen;
}
++left;
}
}
} if(start == -1) {
return "";
}
return s.substring(start, start + minLen);
}
}

python

 class Solution:
def minWindow(self, s: str, t: str) -> str:
letterT = collections.Counter(t) window = collections.defaultdict(int)
left = 0
letterSeen = 0
start = -1
minLen = len(s) + 1
for right in range(len(s)): window[s[right]] += 1
if window[s[right]] <= letterT[s[right]]:
letterSeen += 1
while letterSeen == len(t):
if right - left + 1 < minLen:
start = left;
minLen = right - left + 1 window[s[left]] -= 1
if window[s[left]] < letterT[s[left]]:
letterSeen -= 1 left += 1 if start == -1:
return "" return s[start: start + minLen]

2.b 只需要一个map letterT, 用右滑动来减字母个数,左滑动来加字母个数,如果左边也扫到尾部,正好左右抵消还原原来的map.

 class Solution {
public String minWindow(String s, String t) {
int[] letterT = new int[256]; for(int i = 0; i < t.length(); ++i) {
++letterT[t.charAt(i) - 'A'];
} int lettersSeen = 0;
int minLen = Integer.MAX_VALUE;
int start = -1;
for(int left = 0, right = 0; right < s.length(); ++right) {
--letterT[s.charAt(right) - 'A'];
if(letterT[s.charAt(right) - 'A'] >= 0) {
++lettersSeen; while(lettersSeen == t.length()) {
if(right - left + 1 < minLen) {
minLen = right - left + 1;
start = left;
}
++letterT[s.charAt(left) - 'A'];
if(letterT[s.charAt(left) - 'A'] > 0) {
--lettersSeen;
}
++left;
}
}
} if(start == -1) {
return "";
}
return s.substring(start, start + minLen);
}
}

python:

 class Solution:
def minWindow(self, s: str, t: str) -> str:
letterT = collections.Counter(t) lettersSeen = 0
start = -1
minLen = len(s) + 1
left = 0
for right in range(len(s)):
if s[right] in letterT:
letterT[s[right]] -= 1
if letterT[s[right]] >= 0:
lettersSeen += 1 while lettersSeen == len(t):
if right - left + 1 < minLen:
minLen = right - left + 1
start = left if s[left] in letterT:
letterT[s[left]] += 1 if letterT[s[left]] > 0:
lettersSeen -= 1 left += 1 if start == -1:
return "" return s[start: start+minLen]

Minimum Window Substring LT76的更多相关文章

  1. 53. Minimum Window Substring

    Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...

  2. Minimum Window Substring @LeetCode

    不好做的一道题,发现String Algorithm可以出很多很难的题,特别是多指针,DP,数学推导的题.参考了许多资料: http://leetcode.com/2010/11/finding-mi ...

  3. LeetCode解题报告—— Minimum Window Substring && Largest Rectangle in Histogram

    1. Minimum Window Substring Given a string S and a string T, find the minimum window in S which will ...

  4. leetcode76. Minimum Window Substring

    leetcode76. Minimum Window Substring 题意: 给定字符串S和字符串T,找到S中的最小窗口,其中将包含复杂度O(n)中T中的所有字符. 例如, S ="AD ...

  5. 【LeetCode】76. Minimum Window Substring

    Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...

  6. 刷题76. Minimum Window Substring

    一.题目说明 题目76. Minimum Window Substring,求字符串S中最小连续字符串,包括字符串T中的所有字符,复杂度要求是O(n).难度是Hard! 二.我的解答 先说我的思路: ...

  7. [LeetCode] Minimum Window Substring 最小窗口子串

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

  8. [Leetcode][JAVA] Minimum Window Substring

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

  9. Java for LeetCode 076 Minimum Window Substring

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

随机推荐

  1. Object.MemberwiseClone

    [Object.MemberwiseClone] Creates a shallow copy of the current Object. protected object MemberwiseCl ...

  2. Shc 应用

    1.说明 shc是一个加密shell脚本的工具, 它的作用是把shell脚本转换为一个可执行的二进制文件 2.安装 下载 # mget  http://www.datsi.fi.upm.es/~fro ...

  3. verilog之inout

    1.inout 类型的data信号 写操作有效时(rd_wr_l=0):data端口输入信号,此时data为高阻态,允许对其进行赋值. 读操作有效时(rd_wr_l=1):data端口输出信号,此时d ...

  4. 聚合查询、分组查询、F&Q查询

    一.聚合查询和分组查询 1.aggregate(*args, **kwargs): 通过对QuerySet进行计算,返回一个聚合值的字典.aggregate()中每个参数都指定一个包含在字典中的返回值 ...

  5. Python+Selenium学习--键盘事件

    场景 我们在实际的测试工作中,有时候需要使用tab键将焦点移动到下一个元素,用于验证元素的排序是否正确.webdriver的Keys()类提供键盘上所有的操作,甚至可以模拟一些组合键的操作,如Ctrl ...

  6. TDD - 登录成功和失败

    /** * Created by Administrator on 2017-04-06. */ @RunWith(SpringJUnit4ClassRunner.class)@SpringBootT ...

  7. 初识Netty

    我们已经了解了Socket通信/IO/NIO/AIO编程,对于通信模型已经有了一个初步的认识,其实我们之前所学习的仅仅是一个模型,如果想把这些真正的用于实际工作中去,其实我们之前所学习的仅仅是一个模型 ...

  8. elasticsearch查询语句总结

    query 和  filter 的区别请看:https://www.cnblogs.com/bainianminguo/articles/10396956.html Filter DSL term 过 ...

  9. postman接口测试实例

    牛刀小试项目 抽奖项目

  10. java_12多态

    1多态概述 多态是继封装.继承之后,面向对象的第三大特性. 现实事物经常会体现出多种形态,如学生,学生是人的一种,则一个具体的同学张三既是学生也是人,即出现两种形态. Java作为面向对象的语言,同样 ...