显然可以离线主席树,这里用莫队+分块做。分块的一个重要思想是实现修改与查询时间复杂度的均衡,这里莫队和分块互相弥补。

考虑暴力的分块做法,首先显然大于n的数直接忽略,于是将值域分成sqrt(n)份,每块记录块内的所有值是否在此当前区间内都已存在。

这样每次暴力从L到R分别放入这个表,最后从小到大询问每个块是否已满,若没有则在块内枚举第一个不存在的数。

注意到这样的总修改复杂度O(nq),查询复杂度O(qsqrt(n))。

考虑莫队,将序列分成sqrt(n)份,使总修改复杂度变为O(nsqrt(n))。查询复杂度不变O(qsqrt(n))。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,K=;
int n,m,B,a[N],b[N],ans[N],cnt[K],s[K][K];
struct P{ int l,r,id; }q[N]; bool cmp(const P &x,const P &y){ return b[x.l]!=b[y.l] ? b[x.l]<b[y.l] : x.r<y.r; } void add(int x){
if (x>n) return;
int t=x%B; s[b[x]][t]++; if (s[b[x]][t]==) cnt[b[x]]++;
} void del(int x){
if (x>n) return;
int t=x%B; s[b[x]][t]--; if (s[b[x]][t]==) cnt[b[x]]--;
} int Que(){
rep(i,,n/B+){
int t=min(n,i*B-)-(i-)*B+;
if (cnt[i]==t) continue;
rep(j,(i-)*B,min(n,i*B-)) if (!s[i][j%B]) return j;
}
return n+;
} int main(){
freopen("bzoj3585.in","r",stdin);
freopen("bzoj3585.out","w",stdout);
scanf("%d%d",&n,&m); B=; b[]=;
rep(i,,n) scanf("%d",&a[i]),b[i]=i/B+;
rep(i,,m) scanf("%d%d",&q[i].l,&q[i].r),q[i].id=i;
sort(q+,q+m+,cmp); int L=,R=;
rep(i,,m){
while (R<q[i].r) R++,add(a[R]);
while (L>q[i].l) L--,add(a[L]);
while (R>q[i].r) del(a[R]),R--;
while (L<q[i].l) del(a[L]),L++;
ans[q[i].id]=Que();
}
rep(i,,m) printf("%d\n",ans[i]);
return ;
}

[BZOJ3585]mex(莫队+分块)的更多相关文章

  1. 【BZOJ3339&&3585】mex [莫队][分块]

    mex Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 有一个长度为n的数组{a1,a2,. ...

  2. 【BZOJ3585/3339】mex 莫队算法+分块

    [BZOJ3585]mex Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一个区间内最小没有出现过的自然数. Input 第一行n,m. 第二行为n个数. ...

  3. [BZOJ 3585] mex 【莫队+分块】

    题目链接:BZOJ - 3585 题目分析 区间mex,即区间中没有出现的最小自然数. 那么我们使用一种莫队+分块的做法,使用莫队维护当前区间的每个数字的出现次数. 然后求mex用分块,将权值分块(显 ...

  4. 【bzoj4129】Haruna’s Breakfast 带修改树上莫队+分块

    题目描述 给出一棵树,点有点权.支持两种操作:修改一个点的点权,查询链上mex. 输入 第一行包括两个整数n,m,代表树上的结点数(标号为1~n)和操作数.第二行包括n个整数a1...an,代表每个结 ...

  5. Bzoj 3236: [Ahoi2013]作业 莫队,分块

    3236: [Ahoi2013]作业 Time Limit: 100 Sec  Memory Limit: 512 MBSubmit: 1113  Solved: 428[Submit][Status ...

  6. BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块

    BZOJ_3585_mex && BZOJ_3339_Rmq Problem_莫队+分块 Description 有一个长度为n的数组{a1,a2,...,an}.m次询问,每次询问一 ...

  7. BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块

    BZOJ_3809_Gty的二逼妹子序列 && BZOJ_3236_[Ahoi2013]作业 _莫队+分块 Description Autumn和Bakser又在研究Gty的妹子序列了 ...

  8. BZOJ3236[Ahoi2013]作业——莫队+树状数组/莫队+分块

    题目描述 输入 输出 样例输入 3 4 1 2 2 1 2 1 3 1 2 1 1 1 3 1 3 2 3 2 3 样例输出 2 2 1 1 3 2 2 1 提示 N=100000,M=1000000 ...

  9. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

随机推荐

  1. service注入到action中

    service注入到action中 之前本人每次要获得service都是在action自己通过WebApplicationContext的getBean获得的,一直在spring中只配置到了servi ...

  2. MySql与对应的Java的时间类型

    MySql的时间类型有          Java中与之对应的时间类型date                                           java.sql.Date Date ...

  3. Spring RedisTemplate操作-xml配置(1)

    网上没能找到全的spring redistemplate操作例子,故特意化了点时间做了接口调用练习,基本包含了所有redistemplate方法. 该操作例子是个系列,该片为spring xml配置, ...

  4. jQuery中Animate进阶用法(三)

    progressType: Function( Promise animation, Number progress, Number remainingMs )每一步动画完成后调用的一个函数,无论动画 ...

  5. 新.Net架构必备工具列表

    N多年前微软官网曾发了.Net下必备的十种工具,N多年过去了,世异时移,很多东西都已经变化了,那个列表也似乎陈旧了.而且,该文也只是对十种工具独立的介绍,显得有些罗列的感觉,是不是每个工具都是同等重要 ...

  6. iOS8 自定义navigationItem.titleView

    navigationBar其实有三个子视图,leftBarButtonItem,rightBarButtonItem,以及titleView.前两种的自定义请参考http://www.cnblogs. ...

  7. [BZOJ 1013][JSOI 2008] 球形空间产生器sphere 题解(高斯消元)

    [BZOJ 1013][JSOI 2008] 球形空间产生器sphere Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面 ...

  8. 第12月第26天 swift 下划线

    1. The _ is used to define that the parameter is not named If you have multiple _ it states that you ...

  9. WIN10文件无法自动刷新问题解决方法

    Window10系统有时候会遇到以下类似的问题 1.文件删除后,图标还在,无法自动刷新屏幕,按F5或右键菜单刷新后才消失 2.文件粘贴后,不显示,刷新后才显示 3.回收站清理后,文件图标仍显示有垃圾 ...

  10. Javascript - 预编译与函数词法作用域

    预编译与函数词法作用域(Precompiled & Scoped) 预编译 Javascript脚本的宿主在执行代码之前对脚本做了预编译处理,比如浏览器对Js进行了预编译,编译器会扫描所有的声 ...