题目链接:古代猪文

  好久没写博客了,这次就先写一篇吧……

  题面好鬼……概括起来就是:给出\(N,G(\leqslant 10^9)\),求:\[G^{\sum_{d|n}\binom{n}{d}} \bmod p \]

  其中\(p=999911659\),是一个质数。

  首先,当\(G\neq p\)时,由欧拉定理可知\[G^x\equiv G^{x\bmod(p-1)}(\bmod p)\]

  然后我们实际上就是要快速计算\[\sum_{d|n}\binom{n}{d} \bmod(p-1)\]

  由于\(p-1\)不是一个质数,我们可以把它给质因数分解了,得到\(p-1=2\times 3\times 4679\times 35617\)

  然后分别在模这些数的情况下用\(Lucas\)定理算出组合数,再中国剩余定理合并。用中国剩余定理的时候注意有多个模数,不要弄混了。

  复习一下\(Lucas\)定理,当\(p\)为质数时,有:\[\binom{a}{b} \equiv \binom{\lfloor \frac{a}{p} \rfloor}{\lfloor \frac{b}{p} \rfloor} \binom{a\bmod p}{b\bmod p}(\bmod p)\]

  中国剩余定理复习:xlightgod的博客Mashirosky的博客

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define mod 999911659
#define maxn 40010 using namespace std;
typedef long long llg; int n,g,pr,pk,pri[4]={2,3,4679,35617};
llg jie[4][maxn],ni[4][maxn],zhi; llg mi(llg a,int b){
llg s=1;
while(b){
if(b&1) s=s*a%pr;
a=a*a%pr; b>>=1;
}
return s;
} llg C(int x,int y){return x<y?0:jie[pk][x]*ni[pk][y]%pr*ni[pk][x-y]%pr;}
llg lucas(int x,int y){
if(!y) return 1; if(x<y) return 0;
return lucas(x/pr,y/pr)*C(x%pr,y%pr)%pr;
} llg hebing(int x,int y){
llg now=0;
for(int k=0;k<4;k++){
pr=pri[k],pk=k;
now+=(mod-1)/pr*mi((mod-1)/pr,pr-2)*lucas(x,y);
now%=mod-1;
}
return now;
} int main(){
File("a");
scanf("%d %d",&n,&g);
if(mod==g){putchar('0');return 0;}
for(int k=0;k<4;k++){
jie[k][0]=1; pr=pri[k]; pk=k;
for(int i=1;i<pr;i++) jie[k][i]=jie[k][i-1]*i%pr;
ni[k][pr-1]=mi(jie[k][pr-1],pr-2);
for(int i=pr-1;i;i--) ni[k][i-1]=ni[k][i]*i%pr;
}
for(int d=1,l=sqrt(n);d<=l;d++)
if(n%d==0){
zhi+=hebing(n,d);
if(n/d!=d) zhi+=hebing(n,n/d);
zhi%=(mod-1);
}
pr=mod; printf("%lld",mi(g,zhi));
return 0;
}

BZOJ 1951 【SDOI2010】 古代猪文的更多相关文章

  1. BZOJ 1951: [Sdoi2010]古代猪文( 数论 )

    显然答案是G^∑C(d,N)(d|N).O(N^0.5)枚举N的约数.取模的数999911659是质数, 考虑欧拉定理a^phi(p)=1(mod p)(a与p互质), 那么a^t mod p = a ...

  2. BZOJ 1951: [Sdoi2010]古代猪文 [Lucas定理 中国剩余定理]

    1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 2194  Solved: 919[Submit][Status] ...

  3. 【刷题】BZOJ 1951 [Sdoi2010]古代猪文

    Description "在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心--" --选自猪王国民歌 很久 ...

  4. bzoj 1951 [Sdoi2010]古代猪文(数论知识)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1951 [思路] 一道优(e)秀(xin)的数论题. 首先我们要求的是(G^sigma{ ...

  5. bzoj 1951 [Sdoi2010]古代猪文 ——数学综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...

  6. bzoj 1951: [Sdoi2010]古代猪文

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...

  7. BZOJ.1951.[SDOI2010]古代猪文(费马小定理 Lucas CRT)

    题目链接 \(Description\) 给定N,G,求\[G^{\sum_{k|N}C_n^k}\mod\ 999911659\] \(Solution\) 由费马小定理,可以先对次数化简,即求\( ...

  8. bzoj 1951: [Sdoi2010]古代猪文 【中国剩余定理+欧拉定理+组合数学+卢卡斯定理】

    首先化简,题目要求的是 \[ G^{\sum_{i|n}C_{n}^{i}}\%p \] 对于乘方形式快速幂就行了,因为p是质数,所以可以用欧拉定理 \[ G^{\sum_{i|n}C_{n}^{i} ...

  9. BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)

    题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...

  10. BZOJ 1951: [Sdoi2010]古代猪文 ExCRT+欧拉定理+Lucas

    欧拉定理不要忘记!! #include <bits/stdc++.h> #define N 100000 #define ll long long #define ull unsigned ...

随机推荐

  1. windows MySQL5.7.9免安装版配置方法

    1. 解压MySQL压缩包    将下载的MySQL压缩包解压到自定义目录下,我的解压目录是:    "D:\Program Files\mysql-5.7.9-win32"    ...

  2. Oracle 的闪回技术 --flashback

    SQL Fundamentals: 表的创建和管理 如何开启数据库闪回? SQL> shutdown immediate; ORA-01109: database not open Databa ...

  3. StartUML-类图

  4. ubuntu ibus ,chinese input-method

    第一:安装IBus框架, sudo apt-get install ibus ibus-clutter ibus-gtk ibus-gtk3 ibus-qt4 启动IBus框架,在终端输入: im-s ...

  5. Disruptor的伪共享解决方案

    1.术语 术语 英文单词 描述 内存屏障 Memory Barriers 是一组处理器指令,用于实现对内存操作的顺序限制. In the Java Memory Model a volatile fi ...

  6. JAVA中传递的值还是引用的问题

    public static void main(String[] args) { /*byte b[] = new byte[1024*1024*50]; System.out.println(b); ...

  7. mysql参数安全设置

    MySQL安全相关的参数有哪些?该如何配置? 1.MySQL数据安全 innodb_flush_log_at_trx_commit =1 #innodb每次提交事务redo buffer 刷新到red ...

  8. shell export 命令

    export 命令作用是 把变量导出 也可以用export来定义环境变量 导入 定义的变量 这样的话类似于python面向对象的self.变量 一样 在脚本到处调用这个变量

  9. MySql数据库批量备份命令

    rd d:\mysql_data-BAK /s /qmd d:\mysql_data-BAKxcopy d:\mysql_data d:\mysql_data-BAK /e

  10. [ABP项目实战]-后台管理系统-目录

    学习ABP也有一段时间了,但是总是学习了后面的忘记了前面的,为了巩固所学到的知识以及记录所学到的东西,因此有了本系列的诞生. ABP ASP.NET Boilerplate Project(ABP.N ...