用Keras定义网络模型有两种方式,

之前我们介绍了Sequential顺序模型,今天我们来接触一下 Keras 的函数式API模型

函数式API:全连接网络

from keras.layers import Input, Dense
from keras.models import Model # 这部分返回一个张量
inputs = Input(shape=(784,)) # 层的实例是可调用的,它以张量为参数,并且返回一个张量
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x) # 这部分创建了一个包含输入层和三个全连接层的模型
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
loss='categorical_crossentropy',
metrics=['accuracy'])
model.fit(data, labels,batch_size=32, epochs=5) # 开始训练

多输入多输出模型

主要负责用函数式API来实现它

主要输入接收新闻标题本身,即一个整数序列(每个证书编码一个词),这些整数在1到10000之间(10000个词的词汇表),且序列长度为100个词

from keras.layers import Input, Embedding, LSTM, Dense
from keras.models import Model # 标题输入:接收一个含有 100 个整数的序列,每个整数在 1 到 10000 之间。
# 注意我们可以通过传递一个 "name" 参数来命名任何层。
main_input = Input(shape=(100,), dtype='int32', name='main_input') # Embedding 层将输入序列编码为一个稠密向量的序列,
# 每个向量维度为 512。
x = Embedding(output_dim=512, input_dim=10000, input_length=100)(main_input) # LSTM 层把向量序列转换成单个向量,
# 它包含整个序列的上下文信息
lstm_out = LSTM(32)(x)

在这里,我们插入辅助损失,即使在模型主损失很高的情况下,LSTM层和Embedding层都能被平稳地训练。

auxiliary_output = Dense(1, activation='sigmoid', name='aux_output')(lstm_out)

此时,我们将辅助输入数据与 LSTM 层的输出连接起来,输入到模型中:

auxiliary_input = Input(shape=(5,), name='aux_input')
x = keras.layers.concatenate([lstm_out, auxiliary_input]) # 堆叠多个全连接网络层
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x)
x = Dense(64, activation='relu')(x) # 最后添加主要的逻辑回归层
main_output = Dense(1, activation='sigmoid', name='main_output')(x)

然后定义一个具有两个输入和两个输出的模型:

model = Model(inputs=[main_input, auxiliary_input], outputs=[main_output, auxiliary_output])

现在编译模型,并给辅助损失分配一个 0.2 的权重。如果要为不同的输出指定不同的 loss_weights 或 loss,可以使用列表或字典。 在这里,我们给 loss 参数传递单个损失函数,这个损失将用于所有的输出。

model.compile(optimizer='rmsprop', loss='binary_crossentropy',
loss_weights=[1., 0.2])

我们可以通过输入数组和目标数组列表来训练模型:

model.fit([headline_data, additional_data], [labels, labels],
epochs=50, batch_size=32)

由于输入和输出均被命名了(在定义时传递了一个 name 参数),我们也可以通过以下方式编译模型:

model.compile(optimizer='rmsprop',
loss={'main_output': 'binary_crossentropy', 'aux_output': 'binary_crossentropy'},
loss_weights={'main_output': 1., 'aux_output': 0.2}) # 然后使用以下方式训练:
model.fit({'main_input': headline_data, 'aux_input': additional_data},
{'main_output': labels, 'aux_output': labels},
epochs=50, batch_size=32)

共享网络层

函数API的另一个用途是使用共享网络层的模型。

比如我们想建立一个模型来分辨两条推文是否来自同一个人,实现这个目标的方法是:将两条推文编码层两个向量,连接向量,然后添加逻辑回归层;这将输出推文来自通一个作者的概率。模型将接受一对对正负表示的推特数据。

太难了,我理解不了。以后这条博客慢慢更新。

Keras函数式 API的更多相关文章

  1. keras函数式编程(多任务学习,共享网络层)

    https://keras.io/zh/ https://keras.io/zh/getting-started/functional-api-guide/ https://github.com/ke ...

  2. 手写数字识别——利用keras高层API快速搭建并优化网络模型

    在<手写数字识别——手动搭建全连接层>一文中,我们通过机器学习的基本公式构建出了一个网络模型,其实现过程毫无疑问是过于复杂了——不得不考虑诸如数据类型匹配.梯度计算.准确度的统计等问题,但 ...

  3. 【小白学PyTorch】21 Keras的API详解(下)池化、Normalization层

    文章来自微信公众号:[机器学习炼丹术].作者WX:cyx645016617. 参考目录: 目录 1 池化层 1.1 最大池化层 1.2 平均池化层 1.3 全局最大池化层 1.4 全局平均池化层 2 ...

  4. TensorFlow 1.4利用Keras+Estimator API进行训练和预测

    Tensorflow 1.4中,Keras作为作为核心模块可以直接通过tf.keas进行调用,但是考虑到keras对tfrecords文件进行操作比较麻烦,而将keras模型转成tensorflow中 ...

  5. 【小白学PyTorch】21 Keras的API详解(上)卷积、激活、初始化、正则

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx6450 ...

  6. 小白如何学习PyTorch】25 Keras的API详解(下)缓存激活,内存输出,并发解决

    [新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑答疑解惑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx6450 ...

  7. Keras高层API之Metrics

    在tf.keras中,metrics其实就是起到了一个测量表的作用,即测量损失或者模型精度的变化.metrics的使用分为以下四步: step1:Build a meter acc_meter = m ...

  8. 深度学习框架: Keras官方中文版文档正式发布

    今年 1 月 12 日,Keras 作者 François Chollet‏ 在推特上表示因为中文读者的广泛关注,他已经在 GitHub 上展开了一个 Keras 中文文档项目.而昨日,Françoi ...

  9. 3.keras实现-->高级的深度学习最佳实践

    一.不用Sequential模型的解决方案:keras函数式API 1.多输入模型 简单的问答模型 输入:问题 + 文本片段 输出:回答(一个词) from keras.models import M ...

随机推荐

  1. socket可读可写就绪条件

    参考 <UNIX 网络编程卷1>中的<第6章 I/O复用> 一. 满足下列四个条件中的任何一个时,一个套接字准备好读. 该套接字接收缓冲区中的数据字节数大于等于套接字接收缓存区 ...

  2. Nginx 多进程连接请求/事件分发流程分析

    Nginx使用多进程的方法进行任务处理,每个worker进程只有一个线程,单线程循环处理全部监听的事件.本文重点分析一下多进程间的负载均衡问题以及Nginx多进程事件处理流程,方便大家自己写程序的时候 ...

  3. GetLastError()数字_转换为_文字

    1.具体参数 可参看 http://blog.csdn.net/hongweigg/article/details/6821536 或 其它文章 或 MSDN 2.VC6 测试代码: #include ...

  4. CentOS6.4x86EngCustomize120g__20160307.rar

    安装的镜像包: CentOS-6.4-i386-bin-DVD1to2(CentOS-6.4-i386-bin-DVD1.iso / CentOS-6.4-i386-bin-DVD2.iso) 1. ...

  5. Numpy np.array 相关常用操作

    https://www.cnblogs.com/oftenlin/p/7856389.html

  6. UVA-11082 Matrix Decompressing (网络流建模)

    题目大意:给出一个由1到20组成的整数矩阵的每一行和每一列的和,构造这个矩阵.输出任意一个构造方案. 题目分析:将每一行视作一个点x,将每一列视作一个点y.对于矩阵中的每一个格子,都对应一个二元关系& ...

  7. python学习笔记(一)---python下载以及环境的安装

    转载网址:https://www.runoob.com/python/python-install.html 1.下载python安装包: 安装包下载网址(如下图所在的网址):https://www. ...

  8. HDU 1045 dfs + 回溯

    题目链接:http://acm.hrbust.edu.cn/vj/index.php?/vj/index.php?c=&c=contest-contest&cid=134#proble ...

  9. Vue.js学习笔记:在元素 和 template 中使用 v-if 指令

    f 指令 语法比较简单,直接上代码: <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" " ...

  10. mysql 简单级联的学习

    数据库上面一直是我的弱项,昨天突然想到,简单的级联,即一个表中的列表删除了,另外一个依赖这个表的其他数据应该也会删除,当时想了下,可以根据外键来判断把其他表的数据给删除了,但是这样一来好像要必须知道其 ...