ICG游戏:斐波那契博弈
描述:
有一堆个数为n(n>=2)的石子,游戏双方轮流取石子,规则如下:
1)先手不能在第一次把所有的石子取完,至少取1颗;
2)之后每次可以取的石子数至少为1,至多为对手刚取的石子数的2倍;
3)取走最后一个石子的人为赢家。
结论:
如果n为斐波那契数(2,3,5,8,13,21,34,55,89...),则先手必败。
证明一:
如果按原来的套路:
由于局面不仅跟当前剩余数有关,还与上次取的数有关,所以状态中需要考虑能取的数(变得没那么直观)。
必败态:当剩余数为斐波那契数,且不能一次取完时;
当剩余数不是斐波那契数,但其按Zeckendorf定理分解后,不能一次取完其中最小分解数时。
必胜态:当剩余数不是斐波那契数,且其按Zeckendorf定理分解后,能一次取完其中最小分解数时;
当能一次取完时剩余数时;
只需证明:
1.必败态任一操作都将转为必胜态;
2.必胜态存在一操作转为必败态;
行但是麻烦,仅与当前局面有关的游戏,用这种分析才方便。
证明二:
当开始是斐波那契数时,用数学归纳法证明必败:
当n=2时,必败;
设当n<=f(k)时,必败;
则当n=f(k + 1)时,有f(k + 1) = f(k) + f(k - 1):
如果取走数量大于等于f(k -1),则后手可以一次取完,由于f(k) < 2(k - 1)。
则先手不能一次取完f(k - 1)。根据归纳法的假设,对于f(k - 1),后手必能取得f(k - 1)最后一颗。
此时,还需要证明,先手不能一次取完剩下的f(k):
易得,先手取的石子数x = f(k - 1) / 3时,后手则取2 * f(k - 1) / 3,为最大。
(由于后手取石子的最大值函数为max(2x, f(k - 1) - x),两者相等时最大,即x = f(k - 1) / 3)
此时,先手能取得最大值为2 * (2 * f(k - 1) / 3),即4f(k - 1) / 3,与f(k)相比,做差可知后者大,即一次不能取完,由于假设先手必败。
证毕。
当开始不是斐波那契数列时:
由“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。
则数n可以分解为n1 + n2 + ... + nx,(1...x是下标)每个都是斐波那契数,且没有两个是连续的;
此时,只要取走最小的那个即可。由于n(x - 1)和nx不连续,则易得n(x - 1) > 2nx,即取走最小那个数后,后手不能取完第二小的数。
此时,问题分解为多个小的斐波那契数,且必败态都是对方。
ICG游戏:斐波那契博弈的更多相关文章
- {HDU}{2516}{取石子游戏}{斐波那契博弈}
题意:给定一堆石子,每个人最多取前一个人取石子数的2被,最少取一个,最后取石子的为赢家,求赢家. 思路:斐波那契博弈,这个题的证明过程太精彩了! 一个重要的定理:任何正整数都可以表示为若干个不连续的斐 ...
- HDU 2516 取石子游戏 斐波纳契博弈
斐波纳契博弈: 有一堆个数为n的石子,游戏双方轮流取石子,满足: 1)先手不能在第一次把所有的石子取完: 2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍) ...
- HDU 2516 取石子游戏(斐波那契博弈)
取石子游戏 Time Limit: 2000/1000 MS(Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submissi ...
- 51Nod 1070:Bash游戏 V4(斐波那契博弈)
1070 Bash游戏 V4 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 收藏 关注 有一堆石子共有N个.A B两个人轮流拿,A先拿.每次拿的数量最少1个 ...
- HDU.2516 取石子游戏 (博弈论 斐波那契博弈)
HDU.2516 取石子游戏 (博弈论 斐波那契博弈) 题意分析 简单的斐波那契博弈 博弈论快速入门 代码总览 #include <bits/stdc++.h> #define nmax ...
- 51Nod 1070 Bash游戏 V4(斐波那契博弈)
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1070 题意: 思路: 这个是斐波那契博弈,http://blog.csd ...
- 题解报告:hdu 2516 取石子游戏(斐波那契博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任意多个, ...
- 51nod Bash游戏(V1,V2,V3,V4(斐波那契博弈))
Bash游戏V1 有一堆石子共同拥有N个. A B两个人轮流拿.A先拿.每次最少拿1颗.最多拿K颗.拿到最后1颗石子的人获胜.如果A B都很聪明,拿石子的过程中不会出现失误.给出N和K,问最后谁能赢得 ...
- hdu 2516 取石子游戏 (斐波那契博弈)
题意:1堆石子有n个,两人轮流取.先取者第1次可以取任意多个,但不能全部取完.以后每次取的石子数不能超过上次取子数的2倍. 取完者胜,先取者负输出"Second win",先取者胜 ...
- 取石子游戏 HDU2516(斐波那契博弈)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2516 题目: Problem Description 1堆石子有n个,两人轮流取.先取者第1次可以取任 ...
随机推荐
- Buildroot 打包文件系统流程跟踪
/********************************************************************************* * Buildroot 打包文件系 ...
- HDU1501 dfs
像这样有维度的一定要记忆化啊........... #include<cstdio> #include<cstdlib> #include<iostream> #i ...
- jenkins执行shell命令,有时会提示“Command not found”
这个问题其实就是环境变量没有配准确 (1)检查你在Jenkins中设置的maven是否准确,可以通过[new job]按钮查看新建job中是否有maven选项,没有就是你配置的不准确 如果你下载的插件 ...
- .NET/C# 判断某个类是否是泛型类型或泛型接口的子类型
.NET 中提供了很多判断某个类型或实例是某个类的子类或某个接口的实现类的方法,然而这事情一旦牵扯到泛型就没那么省心了. 本文将提供判断泛型接口实现或泛型类型子类的方法. 本文内容 .NET 中没有自 ...
- Python中定时任务框架APScheduler
前言 大家应该都知道在编程语言中,定时任务是常用的一种调度形式,在Python中也涌现了非常多的调度模块,本文将简要介绍APScheduler的基本使用方法. 一.APScheduler介绍 APSc ...
- ORA-09817: Write to audit file failed 的解决
今天在进行awr报表导出时,用sys as sysdba 登录,不能connect,报ORA-09817: Write to audit file failed 错误,是系统空间不足的报警.df -l ...
- sourcetree 出现忽然分支消失,git文件变乱
通过sourcetree提交后,忽然分支没有了,并且git文件变乱 解决: 1.双击sourcetree时 点击第一个自动修复,开启sourcetree 2.克隆新的仓库到本地,并检出需要的分支 3. ...
- .NET 4.5 HttpClient 中使用Cookie
为了使用.NET 4.5的HttpClient从WIN2K3换成了WIN7.装VS2010,结果告诉我VS2010不支持.NET 4.5.又装VS2012,接着装.NET FRAMEWORK 4.5. ...
- SIM800/SIM900/SIM7000/SIM7600底层操作接口_句柄方式完全分离通信底层
使用SIMCOM公司通信模块将底层的通信与应用完全进行了分离,便于移植. SIMCOM.h //定义了相关的结构体与类型. SIMCOM_AT.c//定义了底层的AT接口 SIMCOM_GSM.c// ...
- 黄聪:WIN7下回收站不小心删除的文件怎么恢复,免费数据恢复软件下载
上网找了半天,大多数是收费的,总算找到一款免费的,已经帮我恢复了数据了,在此分享给大家. 注意:只能恢复7天内的,而且数据误删了,就尽量不要再修改你那个盘符的数据了,免得覆盖了! 我用的数据恢复软件R ...