说在开头。

出于对欧几里得的尊重,先简单介(cou)绍(ge)一(zi)下(shu).。

欧几里得,古希腊人,数学家。他活跃于托勒密一世时期的亚历山大里亚,被称为“几何之父”。

他最著名的著作《几何原本》是欧洲数学的基础,提出五大公设,欧几里得几何,被广泛的认为是历史上最成功的教科书。

欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。(https://baike.baidu.com/item/欧几里得/182343?fr=aladdin)

----------------------------------华丽的分割线-------------------------------------

以下都是自己在看书的时候自己想的一些思路,总结。

如有雷同纯属意外,如有异议可以py(仅限妹纸)。

欧几里得算法,也就是所谓的辗转相除法。人话就是,用来求最大公约数的方法。

证明:gcd(a,b)= gcd(b,a%b)

(gcd(a,b),ab的最大公约数;a%b,求模运算,也就是求余数运算。比如7%2=1。)

证明过程:

设正整数a,b(a>b)。

设:gcd(a,b)= c  (我就要设c)

则有:c|a ,c|b  (|,表示可以整除)

设: a = bx + a%b  (x为整数,因为这是求余运算,emmm,这样说应该够平易近人了吧)

则有:a%b = a - bx  (别说恒等变换不知道。233333)

因为:c|b  则 c|bx  (因为c|b=k(k为整数),则kx为整数,这样说够清楚了吧。emmmm)

则:(a%b)/c = (a - bx)/ c    ====》  (a%b)/c = a/c - bx/c

因为:c|a , c|bx

故:a/c,bx/c都为整数,所以a/c - bx/c 也是整数。所以(a%b)也可以被c整数。

即:c |(a%b)

又因为:c|b

故:gcd(b,a%b)= c
则:gcd(a,b)= gcd(b,a%b) 得证。(这证明过程,我就不信全网还有比这写的更清楚的。)

证明完这个我们就可以通过迭代,反复相除(辗转相除)来求ab的最大公约数了。

emmm,为什么就可以了呢。因为gcd(a,b)= gcd(b,a%b)  就是一个反复的过程。

比如我可以继续写:gcd(a,b)= gcd(b,a%b) = gcd(a%b,b%(a%b))=gcd(r1,r2)=·······=gcd(rn-1,rn)(rn=rn-2%rn-1

这样是不是可以更清楚点了。。

代码实现(递归实现)

1、递归操作:辗转相除

2、递归结束操作:余数为0

"""

这只是一个简单版本。

比如,对没有最大公约数的情况并没有做判断。

"""

def gcd(a,b):
if a < b:
a, b = b, a
if a % b != 0:
return gcd(b,a%b)
return b ------------------------------分割线-------------------------------------
回家睡觉。明天再说。困死了。
先给出扩展欧几里得扩展算法实现。有空再说。
-----------------------------分割线---------------------------------------
好吧,之前太懒了。。
万恶的欧几里得扩展:
简单来说就是求ax+by=z的通解。
下面就先来说说什么是通解。 首先,设数字a,b。(a,b>0),并且ab存在最大公约数(没有公约数还玩什么欧几里得)
设最大公约数为c,即gcd(a,b)= c
然后有 ax+by = c,求出的这个x,y就是所谓的ax+by=z的通解。
为什么这么说呢。这里就用简单的办法来说明一下。(可能不严谨)
拿上面的ax+by=c,两边同时乘一个k,即a(xk)+b(yk)= ck
同时令ck=z,则有a(xk)+b(yk)= z。刚才已经把x,y求出来了。
那么这里都乘一个k就可以算出ax+by=z中的x和y了。
(自认为虽然不严谨,但很清楚了。嗯嗯) 然后,接下来就来说一说。这个ax+by=gcd(a,b)的解,x,y怎么算吧。
(不严谨的证明开始了~~) ----------------没时间了,明天再说-----------------------
												

欧几里得算法/欧几里得扩展算法-python的更多相关文章

  1. POJ 1061 青蛙的约会(欧几里得扩展)

    题意:已知青蛙1位置x,速度m,青蛙2位置y,速度n,纬线长度为l,求他们相遇时最少跳跃次数. 思路:设最小跳跃次数为k,则(x + k*m) - (y + k*n) = q*l:经过整理得到k*(n ...

  2. 欧几里得&扩展欧几里得

    原博网址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html 欧几里德算法 欧几里德算法又称辗转相除法,用于计算两个整数 ...

  3. gcd(欧几里得算法)与exgcd(扩展欧几里得算法)

    欧几里得算法: 1.定义:gcd的意思是最大公约数,通常用扩展欧几里得算法求 原理:gcd(a, b)=gcd(b, a%b) 2.证明: 令d=gcd(a, b)  =>  a=m*d,b=n ...

  4. 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法

    BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...

  5. 最大公约数与欧几里得(Euclid)算法

    ---恢复内容开始--- 记a, b的最大公约数为gcd(a, b).显然, gcd(a,b)=gcd(|a|,|b|). 计算最大公约数的Euclid算法基于下面定理: [GCD递归定理]对于任意非 ...

  6. 欧几里得(Euclid)与拓展的欧几里得算法

    欧几里得(Euclid)与拓展的欧几里得算法 欧几里得(Euclid)与拓展的欧几里得算法 欧几里得算法 原理 实现 拓展的欧几里得算法 原理 递归求解 迭代求解 欧几里得算法 原理 欧几里得算法是一 ...

  7. ****ural 1141. RSA Attack(RSA加密,扩展欧几里得算法)

    1141. RSA Attack Time limit: 1.0 secondMemory limit: 64 MB The RSA problem is the following: given a ...

  8. 扩展欧几里得算法(EXGCD)学习笔记

    0.前言 相信大家对于欧几里得算法都已经很熟悉了.再学习数论的过程中,我们会用到扩展欧几里得算法(exgcd),大家一定也了解过.这是本蒟蒻在学习扩展欧几里得算法过程中的思考与探索过程. 1.Bézo ...

  9. codeforces 1244C (思维 or 扩展欧几里得)

    (点击此处查看原题) 题意分析 已知 n , p , w, d ,求x , y, z的值 ,他们的关系为: x + y + z = n x * w + y * d = p 思维法 当 y < w ...

随机推荐

  1. MYSQL数据库、用户、表等基础构建

    MYSQL数据库.用户.表等基础构建: 1.->:创建数据库: 1.1. create schema [数据库名称] default character set utf8 collate utf ...

  2. 沉淀再出发:dubbo的基本原理和应用实例

    沉淀再出发:dubbo的基本原理和应用实例 一.前言 阿里开发的dubbo作为服务治理的工具,在分布式开发中有着重要的意义,这里我们主要专注于dubbo的架构,基本原理以及在Windows下面开发出来 ...

  3. Using shared access signatures (SAS) From Microsoft

    A shared access signature (SAS) provides you with a way to grant limited access to objects in your s ...

  4. Jenkins在CentOS中的安装

    环境准备: tomcat,jdk 包准备:Jenkins的war包,下载路径:https://jenkins.io/download/ 把下载好的war包放在tomcat的webapps中,重启tom ...

  5. pip-修改为国内镜像源

    pip 常用命令 pip install ./downloads/SomePackage-1.0.4.tar.gz pip install http://my.package.repo/SomePac ...

  6. UVa 1640 - The Counting Problem(数论)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. java.lang.NoClassDefFoundError: org/aspectj/weaver/tools/PointcutPrimitive

    问题:使用Spring时,报错:java.lang.NoClassDefFoundError: org/aspectj/weaver/tools/PointcutPrimitive问题原因: 少了as ...

  8. 【node】安装

    参考链接: http://www.runoob.com/nodejs/nodejs-install-setup.html http://blog.csdn.net/u010255310/article ...

  9. Golang测试包

    Golang测试包 golang自带了测试包(testing),直接可以进行单元测试.性能分析.输出结果验证等.简单看着官方文档试了试,总结一下: 目录结构和命令 使用golang的测试包,需要遵循简 ...

  10. C#中HttpWebRequest的用法详解(转载)

    1.HttpWebRequest和HttpWebResponse类是用于发送和接收HTTP数据的最好选择.2.命名空间:System.Net3.HttpWebRequest对象不是利用new关键字创建 ...