P3924 康娜的线段树

题目描述

小林是个程序媛,不可避免地康娜对这种人类的“魔法”产生了浓厚的兴趣,于是小林开始教她\(OI\)。

今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以维护一段区间的信息,是非常厉害的东西。康娜试着写了一棵维护区间和的线段树。由于她不会打标记,因此所有的区间加操作她都是暴力修改的。具体的代码如下:

struct Segment_Tree{
#define lson (o<<1)
#define rson (o<<1|1)
int sumv[N<<2],minv[N<<2];
inline void pushup(int o){sumv[o]=sumv[lson]+sumv[rson];}
inline void build(int o,int l,int r){
if(l==r){sumv[o]=a[l];return;}
int mid=(l+r)>>1;
build(lson,l,mid);build(rson,mid+1,r);
pushup(o);
}
inline void change(int o,int l,int r,int q,int v){
if(l==r){sumv[o]+=v;return;}
int mid=(l+r)>>1;
if(q<=mid)change(lson,l,mid,q,v);
else change(rson,mid+1,r,q,v);
pushup(o);
}
}T;

在修改时,她会这么写:

for(int i=l;i<=r;i++)T.change(1,1,n,i,addv);

显然,这棵线段树每个节点有一个值,为该节点管辖区间的区间和。

康娜是个爱思考的孩子,于是她突然想到了一个问题:

如果每次在线段树区间加操作做完后,从根节点开始等概率的选择一个子节点进入,直到进入叶子结点为止,将一路经过的节点权值累加,最后能得到的期望值是多少?

康娜每次会给你一个值\(qwq\),保证你求出的概率乘上\(qwq\)是一个整数。

这个问题太简单了,以至于聪明的康娜一下子就秒了。

现在她想问问你,您会不会做这个题呢?

输入输出格式

输入格式:

第一行整数\(n,m,qwq\)表示线段树维护的原序列的长度,询问次数,分母。

第二行\(n\)个数,表示原序列。

接下来\(m\)行,每行三个数\(l,r,x\)表示对区间\([l,r]\)加上\(x\)

输出格式:

共\(m\)行,表示期望的权值和乘上\(qwq\)结果。

说明

对于30%的数据,保证 \(1 \leq n,m \leq 100\)

对于70%的数据,保证 \(1 \leq n,m, \leq 10^{5}\)

对于100%的数据,保证 \(1 \leq n,m \leq 10^6\)

\(-1000 \leq a_i,x \leq 1000\)


其实题目不难,然而我概率期望学的差,还是不怎么会做。

我们发现,其实每个叶子节点的贡献的不会变的,则第\(i\)个叶子节点贡献的次数是它之前的所有包含它的区间的贡献次数之和。

根据条件概率,每一个大区间出现的概率都是它的子区间的两倍,所以我们以最小的区间算做1,统计每个叶子节点的贡献次数,最后再除以\(\lceil logn \rceil\)即可。

具体实现可以直接模拟建树统计。

然后我们发现操作只有区间加和全局询问。

区间加我们可以通过叶子节点贡献次数前缀和维护全局偏移量。

复杂度:\(O(nlogn+m)\)


Code:

#include <cstdio>
#define ll long long
ll max(ll x,ll y){return x>y?x:y;}
const ll N=1000010;
ll dat[N],cnt[N],f[N],ans,QAQ,n,m,d,dep[N];
void build(ll l,ll r,ll Dep)
{
if(l==r)
{
dep[l]=Dep;
d=max(d,Dep);
return;
}
ll mid=l+r>>1;
build(l,mid,Dep+1);
build(mid+1,r,Dep+1);
}
void init()
{
scanf("%lld%lld%lld",&n,&m,&QAQ);
build(1,n,1);
for(ll i=1;i<=n;i++)
{
if(dep[i]==d)
cnt[i]=(1<<d)-1;
else
cnt[i]=(1<<d)-2;
scanf("%lld",dat+i);
f[i]=f[i-1]+cnt[i];
ans+=cnt[i]*dat[i];
}
}
void work()
{
ll l,r,x;
d=1<<d-1;
for(ll i=1;i<=m;i++)
{
scanf("%lld%lld%lld",&l,&r,&x);
ans+=(f[r]-f[l-1])*x;
printf("%lld\n",(QAQ/d*ans));
}
}
int main()
{
init();
work();
return 0;
}

2018.7.21

洛谷 P3924 康娜的线段树 解题报告的更多相关文章

  1. 洛谷 P3924 康娜的线段树

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的“魔法”产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以维护一段区间的信息, ...

  2. 洛谷P3924 康娜的线段树(期望 前缀和)

    题意 题目链接 Sol 思路就是根据期望的线性性直接拿前缀和算贡献.. 这题输出的时候是不需要约分的qwq 如果你和我一样为了AC不追求效率的话直接#define int __int128就行了.. ...

  3. P3924 康娜的线段树(期望)

    P3924 康娜的线段树 看起来$O(nlogn)$可过其实由于巨大常数是无法通过的 $O(nlogn)$:70pts 我们手玩样例发现 线段树上某个节点的期望值$f[o]=(f[lc]+f[rc]) ...

  4. P3924 康娜的线段树

    P3924 康娜的线段树 题目描述 小林是个程序媛,不可避免地康娜对这种人类的"魔法"产生了浓厚的兴趣,于是小林开始教她OI. 今天康娜学习了一种叫做线段树的神奇魔法,这种魔法可以 ...

  5. luogu P3924 康娜的线段树

    题面传送门 我们可以画图找规律 这里没图,要看图可以去看M_sea dalao的题解(逃 可以发现单个节点\(i\)对答案的贡献为该节点的点权\(*\frac{1}{2^{dep_i}}\)(\(de ...

  6. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  7. 洛谷P1083 借教室 NOIP2012D2T2 线段树

    正解:线段树 解题报告: ...真的不难啊只是开了这个坑就填下? 就是先读入每天的教室数建个线段树然后每次读入就update一下,线段树存的就这一段的最小值啊,然后如果有次更新完之后tr[1]小于0了 ...

  8. 洛谷$P2572\ [SCOI2010]$ 序列操作 线段树/珂朵莉树

    正解:线段树/珂朵莉树 解题报告: 传送门$w$ 本来是想写线段树的,,,然后神仙$tt$跟我港可以用珂朵莉所以决定顺便学下珂朵莉趴$QwQ$ 还是先写线段树做法$QwQ$? 操作一二三四都很$eas ...

  9. 洛谷P3372 【模板】线段树 1

    P3372 [模板]线段树 1 153通过 525提交 题目提供者HansBug 标签 难度普及+/提高 提交  讨论  题解 最新讨论 [模板]线段树1(AAAAAAAAA- [模板]线段树1 洛谷 ...

随机推荐

  1. Oracle dba权限下修改用户密码 授予用户权限 解锁用户

    1.修改用户密码 alter user scott identified by 123 2.授予用户权限 grant connect,resource to scott 3.解锁用户 alter us ...

  2. python2 - 列表

    列表 a = [1,2,3,4,5,6,7] a[0:4:1]//正向索引 a[-1:-2:-1]//反向索引 列表添加 a = [1, 2] b = [3, 4] +:a + b//把a和b连接,重 ...

  3. sqlserver(2012)清理tempdb

    当数据库运行时间长了之后,tempdb变得特别大,几十G,受不了啊:当然我们知道重启 SQL Server服务的话,tempdb数据库会自动重新创建的,从而使 tempdb 回归到初始大小.但是这是生 ...

  4. Javascript深入__proto__和prototype的区别和联系

    有一个一个装逼的同事,写了一段代码 function a(){} a.__proto__.__proto__.__proto__ 然后问我,下面这个玩意a.__proto__.__proto__.__ ...

  5. Throwable、Error、Exception、RuntimeException的区别与联系

    Throwable类是Java语言中所有错误和异常的超类.只有作为此类(或其子类之一)的实例的对象才被Java虚拟机抛出,或者可以被Java throw语句抛出.类似地,只有这个类或其子类之一可以是c ...

  6. 基于Mininet测量路径的损耗率

    基于Mininet测量路径的损耗率 控制器采用POX,基于OVS仿真 Mininet脚本 创建Node mininet.node Node 创建链路连接 mininet.link TCLink 设置i ...

  7. 亚马逊首次推出卖家APP 可掌握商品盈利状况

    美国零售巨头亚马逊近日首次对外发布了第一款针对卖家和商户的客户端,帮助他们更加高效的管理商品和销售数据. 据美国科技新闻网站 Mashable 报道,之前亚马逊在商户移动客户端方面一直空缺,许多商户不 ...

  8. BFC的表象认识

    首先字面翻译,这三个字母分别代表什么,box,formatting, context,它决定了元素如何对其内容进行定位,以及与其他元素的关系和相互作用. 形象点就是说一种规范,规范什么呢?规范盒子内部 ...

  9. React 初学

    React.createClass({}); getInitialState,this.setState({}); {}解读代码块,外层不要加引号,比如onChange={this.handleCha ...

  10. struts-resultType属性

    1.默认dispatcher:forward方式,服务器端跳转 2.redirect:客户端跳转 3.chain:Action转发,forward方式,服务器端跳转action 4.redirectA ...