描述

输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大。



例如 1,-3,5,1,-2,3



当m=4时,S=5+1-2+3=7

当m=2或m=3时,S=5+1=6

输入格式

第一行两个数n,m

第二行有n个数,要求在n个数找到最大子序和

输出格式

一个数,数出他们的最大子序和

测试样例1

输入

6 4 

1 -3 5 1 -2 3

输出

7

备注

数据范围:

100%满足n,m<=300000

题解

我们由题设f[i]为i位置最大子段和,得到状态转移方程f[i] = max(f[i - 1],sum[i] - sum[k]);  【i - k <= m】
很明显这样做是O(n ^ 2)
对于求sum[i] - sum[k]的最大值,我们可以用单调队列优化

单调队列
单调队列,顾名思义,就是单调的队列,用以O(1)求最值
单调队列用双向队列维护,队首是最值【假设是最大】
每次我们向队尾插入一个元素时,我们若队尾的元素比它要小就将他删除,直至队列为空或者队尾元素大于插入
元素,再将其插入
例如5 3 1,我们要插入4
检查1 < 4,队列变为5 3
检查3 < 4,队列变为5
检查5 > 4,队列变为5 4
插入完成

你会发现这样的操作能满足队列一定单调,而队首就是我们要的值
但注意随着时间的推移,队首元素可能“过时”,就是超出了我们所规定的范围,这个时候就删除队首,直至满足范围
由于每个元素最多进队出队一次,所以总复杂度O(n)

那么这题就好做了,我们用一个单调队列维护前m个sum值,每次只用O(1)就可以转移方程
复杂度O(n)

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 300005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
}
int n,m,q[maxn],head,tail,sum[maxn],f[maxn];
int main()
{
n = read(); m = read();
REP(i,n) sum[i] = sum[i - 1] + read();
head = tail = 0; q[head] = 0;
for (int i = 1; i <= n; i++){
while (i - q[head] > m) head++;
f[i] = max(f[i - 1],sum[i] - sum[q[head]]);
q[++tail] = i;
while (tail > head && sum[q[tail]] < sum[q[tail - 1]]) q[tail - 1] = q[tail],tail--;
}
cout<<f[n]<<endl;
return 0;
}

tyvj1305 最大子序和 【单调队列优化dp】的更多相关文章

  1. Tyvj1305最大子序和(单调队列优化dp)

    描述 输入一个长度为n的整数序列,从中找出一段不超过M的连续子序列,使得整个序列的和最大. 例如 1,-3,5,1,-2,3 当m=4时,S=5+1-2+3=7当m=2或m=3时,S=5+1=6 输入 ...

  2. CF939F Cutlet (单调队列优化DP)

    题目大意:要煎一块有两个面的肉,只能在一段k不相交的时间段$[l_{i},r_{i}]$内翻转,求$2*n$秒后,保证两个面煎的时间一样长时,需要最少的翻转次数,$n<=100000$,$k&l ...

  3. 单调队列优化DP,多重背包

    单调队列优化DP:http://www.cnblogs.com/ka200812/archive/2012/07/11/2585950.html 单调队列优化多重背包:http://blog.csdn ...

  4. bzoj1855: [Scoi2010]股票交易--单调队列优化DP

    单调队列优化DP的模板题 不难列出DP方程: 对于买入的情况 由于dp[i][j]=max{dp[i-w-1][k]+k*Ap[i]-j*Ap[i]} AP[i]*j是固定的,在队列中维护dp[i-w ...

  5. hdu3401:单调队列优化dp

    第一个单调队列优化dp 写了半天,最后初始化搞错了还一直wa.. 题目大意: 炒股,总共 t 天,每天可以买入na[i]股,卖出nb[i]股,价钱分别为pa[i]和pb[i],最大同时拥有p股 且一次 ...

  6. Parade(单调队列优化dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=2490 Parade Time Limit: 4000/2000 MS (Java/Others)    ...

  7. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  8. 【单调队列优化dp】 分组

    [单调队列优化dp] 分组 >>>>题目 [题目] 给定一行n个非负整数,现在你可以选择其中若干个数,但不能有连续k个数被选择.你的任务是使得选出的数字的和最大 [输入格式] ...

  9. [小明打联盟][斜率/单调队列 优化dp][背包]

    链接:https://ac.nowcoder.com/acm/problem/14553来源:牛客网 题目描述 小明很喜欢打游戏,现在已知一个新英雄即将推出,他同样拥有四个技能,其中三个小技能的释放时 ...

  10. 单调队列以及单调队列优化DP

    单调队列定义: 其实单调队列就是一种队列内的元素有单调性的队列,因为其单调性所以经常会被用来维护区间最值或者降低DP的维数已达到降维来减少空间及时间的目的. 单调队列的一般应用: 1.维护区间最值 2 ...

随机推荐

  1. 用phpcms如何将静态页面制作成企业网站(上)

    首先,先要准备好这个静态网页的源文件,如图 bs里面是一些css和js的文件,img则是放图片的,文件中的index是网页的首页 运行一下,看看 是这样的 然后打开phpcms文件,上篇博客中有提到, ...

  2. Python Web部署方式全汇总

    学过PHP的都了解,php的正式环境部署非常简单,改几个文件就OK,用FastCgi方式也是分分钟的事情.相比起来,Python在web应用上的部署就繁杂的多,主要是工具繁多,主流服务器支持不足. 在 ...

  3. Spring学习(1):侵入式与非侵入式,轻量级与重量级

    一. 引言 在阅读spring相关资料,都会提到Spring是非侵入式编程模型,轻量级框架,那么就有必要了解下这些概念. 二. 侵入式与非侵入式 非侵入式:使用一个新的技术不会或者基本不改变原有代码结 ...

  4. 关于购买Redis服务器:腾讯云、阿里云还是华为云?

    个人分类: redis使用 编辑 新年伊始,很多商家都开始进行新年产品大促销,在分布是缓存Redis领域,几家大公司也是打得如火如荼,各有千秋啊. 现在市场上比较有口碑的商家有腾讯云.阿里云.华为云三 ...

  5. centos7.2下解决用Mysql 使用navicate远程连接数据库出现1045 access denied for user 'root'@'localhost' using password yes

    在mysql命令行中执行 SET PASSWORD FOR 'root'@'localhost' = PASSWORD('123456');  GRANT ALL PRIVILEGES ON *.*  ...

  6. charles 在mac下 抓取 https包

    1.  打开charles --> help --> SSL proxying --> install charles root certificate 2. 在弹出的添加证书窗口中 ...

  7. eclipse技巧-快捷键

    ctrl + 1,快速修复 ctrl + d, 快捷删除行 shift + Enter,快速移动光标到下一行 ctrl + F11,运行代码 alt + ↑/↓,快速移动行 ctrl + alt + ...

  8. struts2--文件上传类型3

    拦截器栈在<package>标签内 <action>标签外配置 如上我们如果把它定义成默认拦截器的话就不需要在 <action>标签中引入,没有的话需要引入拦截器 ...

  9. HDU 5159 Card

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5159 题解: 考虑没一个数的贡献,一个数一次都不出现的次数是(x-1)^b,而总的排列次数是x^b, ...

  10. Strust2: 工作流程

    以下为Struts2的体系结构图: Struts2框架处理用户请求,大体分为以下几个过程: (1)用户发出一个HttpServletRequest请求 (2)请求经过一系列过滤器,最后达到Filter ...