【bzoj4002】有意义的字符串
Solution
虽然说这题有点强行但是感觉还是挺妙的,给你通项让你反推数列的这种==有点毒
补档时间
首先有一个东西叫做特征方程,我们可以用这个东西来求二阶线性递推数列的通项:
对于数列\(\{x_n\}\),递推公式为\(x_n=a_1x_{n-1}-a_2x_{n-2}\),那么这个数列的特征方程为:
\]
如果说这个方程有两个相异的根\(p,q\),那么:
A&=\frac{x_2-qx_1}{p(p-q)}\\
B&=\frac{px_1-x_2}{q(p-q)}\\
x_n&=Ap^n+Bq^n
\end{aligned}
\]
如果有两个相等的根\(p\),那么:
A=\frac{px_1-x_2}{p^2}\\
B=\frac{x_2-px_1}{p^2}\\
x_n=(A+Bn)p^n
\end{aligned}
\]
然后我们看回这题
有个奇奇怪怪的条件:$b^2< = d<(b+1)^2 $,这个条件说明什么呢?会发现因为这个条件所以\(0>=\frac{b-\sqrt d}{2}>-0.5\)
但是我们要求的是\(\lfloor(\frac{b+\sqrt d}{2})^n\rfloor\),那么这个时候我们会发现。。其实我们把这个式子稍微变一下变成:
\]
就好了
为什么变成这样呢?首先前面那个东西,我们会发现其实就是。。用特征方程中有相异两根求出的通项式的类似形式,所以我们只要令这两个根为\((\lfloor \frac{b+\sqrt d}{2}\rfloor)^n\)和\((\lfloor \frac{b-\sqrt d}{2}\rfloor)^n\)就好了,然后\(A\)和\(B\)这两个系数要为\(1\),这样我们就可以求出\(x_1\)和\(x_2\)和\(a_1\)和\(a_2\):
p&=\frac{b+\sqrt d}{2}&&q=\frac{b-\sqrt d}{2}\\
x_1&=p+q&&x_2=p^2+q^2\\
a_1&=b&&a_2=\frac{b^2-d}{4}
\end{aligned}
\]
然后!因为题目的条件: b mod 2=1,d mod 4=1 ,所以我们发现\(a_1\)和\(a_2\)都是整数,\(x_1\)和\(x_2\)也都是整数,所以!前半部分的答案一定是一个整数(然而其实好像可以直接用一个叫做共轭根式的东西说明但是我不太会那个东西qwq)
然后这个时候如果是要求那个式子的下取整的话我们直接判断一下\(\frac{b-\sqrt d}{2}\)是否大于等于\(1\)即可,会发现只有在\(n\)是偶数并且\(b^2\neq d\)的情况下减去这个部分会导致整体的下取整少一,特判一下就好了
至于前半部分直接矩阵快速幂求出\(x_n\)即可
然后最后还有一个小问题,就是。。这个模数有点令人难受
这个时候我们需要。。一个小技巧来处理一下加法和乘法:加法的话直接就先减去一个模数然后如果小于\(0\)再加上模数,乘法的话就像快速幂一样处理就好了
代码大概长这个样子
#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const ll MOD=7528443412579576937;
ll add(ll x,ll y){
ll tmp=-MOD+x+y;
if (tmp<0) tmp+=MOD;
return tmp;
}
ll mul(ll x,ll y){
ll ret=0;
for (;y;y>>=1,x=add(x,x))
if (y&1) ret=add(ret,x);
return ret;
}
struct Mtrix{/*{{{*/
ll a[2][2];
void init(){memset(a,0,sizeof(a));}
void setUnit(){for (int i=0;i<2;++i) for (int j=0;j<2;++j) a[i][j]=i==j;}
friend Mtrix operator * (Mtrix x,Mtrix y){
Mtrix ret;
for (int i=0;i<2;++i)
for (int j=0;j<2;++j){
ret.a[i][j]=0;
for (int k=0;k<2;++k)
ret.a[i][j]=add(ret.a[i][j],mul(x.a[i][k],y.a[k][j]));
}
return ret;
}
}ori,ret,base,ans;/*}}}*/
ll n,m,Ans,d,b;
void ksm(ll y){
ret.setUnit(); base=ori;
for (;y;y>>=1,base=base*base)
if (y&1) ret=ret*base;
}
int main(){
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
#endif
scanf("%lld%lld%lld\n",&b,&d,&n);
if (n==0){printf("1\n");return 0;}
ori.init();
ori.a[1][1]=b;ori.a[0][1]=-(b*b-d)/4;
ori.a[1][0]=1;
ans.init();
ans.a[0][0]=b; ans.a[0][1]=(b*b+d)/2;
if (n>=2)
ksm(n-2),ans=ans*ret;
if (n==1) Ans=ans.a[0][0];
else Ans=ans.a[0][1];
if (b*b!=d&&n%2==0) Ans=add(Ans,MOD-1);
printf("%lld\n",Ans);
}
【bzoj4002】有意义的字符串的更多相关文章
- luogu3263/bzoj4002 有意义的字符串 (数学+矩阵快速幂)
首先我们发现$\frac{b+\sqrt{d}}{2}$这个形式好像一元二次方程的求根公式啊(???反正我发现不了) 然后我们又想到虽然这个东西不好求但是$(\frac{b-\sqrt{d}}{2}) ...
- 【BZOJ4002】[JLOI2015]有意义的字符串(数论,矩阵快速幂)
[BZOJ4002][JLOI2015]有意义的字符串(数论,矩阵快速幂) 题面 BZOJ 洛谷 题解 发现我这种题总是做不动... 令\(A=\frac{b+\sqrt d}{2},B=\frac{ ...
- 【BZOJ4002】[JLOI2015]有意义的字符串 数学
[BZOJ4002][JLOI2015]有意义的字符串 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行三个整数 ...
- 【BZOJ】【4002】【JLOI2015】有意义的字符串
构造线性递推式+矩阵乘法 题解戳PoPoQQQ 为了自己以后看的方便手打一遍好了>_> 求$( \frac{b+\sqrt{d}}{2} )^n$的整数部分对p取模后的值 其中$b\mod ...
- BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法
BZOJ_4002_[JLOI2015]有意义的字符串_矩阵乘法 Description B 君有两个好朋友,他们叫宁宁和冉冉.有一天,冉冉遇到了一个有趣的题目:输入 b;d;n,求 Input 一行 ...
- BZOJ 4002--有意义的字符串(矩阵乘法)
4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 963 Solved: 416[Submit][Sta ...
- [JLOI2015]有意义的字符串
4002: [JLOI2015]有意义的字符串 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1000 Solved: 436[Submit][St ...
- BZOJ4002 [JLOI2015]有意义的字符串 【数学 + 矩乘】
题目链接 BZOJ4002 题解 容易想到\(\frac{b + \sqrt{d}}{2}\)是二次函数\(x^2 - bx + \frac{b^2 - d}{4} = 0\)的其中一根 那么就有 \ ...
- 【BZOJ4002】[JLOI2015]有意义的字符串 - 矩阵乘法
题意: 给出b,d,n,求$\lfloor(\frac{b+\sqrt{d}}{2})^n\rfloor \mod 999999999999999989$(原题是7528443412579576937 ...
随机推荐
- python yagmail第三方库发送邮件--更简洁
1.安装第三方库yagmail: pip install yagmail 2.上代码 import yagmail import os def send_email(): #链接邮箱服务器 serve ...
- static和构造函数初始化顺序
abstract class demo{ public demo() {} protected void a() { System.out.println("I am parents!&qu ...
- Hexo+gitment
Gitment是一个基于GitHub问题的评论系统,可以在没有任何服务器端实现的前端使用. 演示页面 中文简介 特征 入门 方法 定制 关于安全 特征 GitHub登录 Markdown / GFM支 ...
- socket编程为什么需要htonl(), ntohl(), ntohs(),htons() 函数-------转载
在C/C++写网络程序的时候,往往会遇到字节的网络顺序和主机顺序的问题.这是就可能用到htons(), ntohl(), ntohs(),htons()这4个函数. 网络字节顺序与本地字节顺序之间的转 ...
- HTML5+Bootstrap 学习笔记 4
HTML5 <map> <area> 标签 <map> 标签定义客户端的图像映射.图像映射是带有可点击区域的图像. <area> 标签定义图像映射内部的 ...
- python sys模块使用详情
python常用模块目录 sys模块提供了一系列有关Python运行环境的变量和函数.1.sys.argv可以用sys.argv获取当前正在执行的命令行参数的参数列表(list).变量解释sys.ar ...
- Linux虚拟机centos系统安装
linux 其他知识目录 安装完后如果虚拟机网络不通请参考:虚拟机网络不通故障解决 1.centos6.9安装 后面安装出了点问题,ip没有并且eth0网卡找不到,不过重新配置ifcfg-eth0后重 ...
- css3浏览器私有属性前缀使用详解
什么是浏览器私有属性前缀 CSS3的浏览器私有属性前缀是一个浏览器生产商经常使用的一种方式.它暗示该CSS属性或规则尚未成为W3C标准的一部分. 以下是几种常用前缀 -webkit- -moz- -m ...
- 从入门到不放弃——OO第一次作业总结
写在最前面: 我是一个这学期之前从未接触过java的小白,对面向对象的理解可能也只是停留在大一python讲过几节课的面向对象.幸运的是,可能由于前三次作业难度还是较低,并未给我造成太大的困难,接下来 ...
- Windows上安装、配置MySQL的常见问题
一,MySQL的下载安装 MySQL的安装过程就不说了,基本上和一般软件的安装过程没什么两样,就是一路点next,设置的root用户的密码要牢记.具体教程可以参考:http://jingyan.bai ...