hadoop之Shuffle和Sort
MapRduce保证reducer的输入是按照key进行排过序的,原因和归并排序有关,在reducer接收到不同的mapper输出的有序数据后,需要再次进行排序,然后是分组排序,如果mapper输出的是有序数据,将减少reducer阶段排序的时间消耗.一般将排序以及Map的输出传输到Reduce的过程称为混洗(shuffle).Shuffle是MapReduce过程的核心,了解Shuffle非常有助于理解MapReduce的工作原理。如果你不知道MapReduce里的Shuffle是什么,那么请看下面这张图

上图中明显分为两个大部分Map任务和Reduce任务,图中的红色虚线代表数据流的一个过程,下面分两部分进行说明:
MAP部分
每一个mapper都有一个circular buffer(环形缓存),环形缓冲区是一个先进先出的循环缓冲区,不用频繁的分配内存,而且在大多数情况下,内存的反复使用也使得我们能用更少的内存块做更多的事,默认情况下大小为100M(可以通过mapreduce.task.io.sort.mb来进行修改).Mapper的输出会首先写进这个缓存里面,当里面的内容达到一个阈值(mapreduce.map.sort.spill.percent,默认情况下为80%),一个后台线程就会开始向磁盘spill这些内容,同时Map将继续向该缓存区写内容.当缓存区写满时,Map被阻塞,直到spill过程完成才会被唤醒.Spills 将会循环写进 mapreduce.cluster.local.dir定义的目录下面,也就是说会产生多个spill磁盘文件.
在spill过程写进磁盘之前还会做一些事情,步骤如下:
(1) 首先线程会先把写的内容分成多个分组,这个和reducer的分组是一致的,partitioner的算法请参考我的另外一篇文章:hadoop之定制自己的Partitioner
(2) 针对每一个分组,线程会实现内存的排序,排序的过程请参考另外一篇文章:hadoop之定制自己的sort过程
(3) 如果存在combiner的话,combiner会在sort之后,在每一个分组进行执行,combiner的执行会导致写到磁盘的数据减少.
每一次环形缓存达到阈值,就会产生一个spill的文件,也就是说可能会产生很多个spill文件.在任务结束之前,这些文件会被合并为统一的带有分组和排好序的文件作为输出.其中mapreduce.task.io.sort.factor定义了一次合并的文件的最大个数,默认的个数为10.另外如果文件个数大于3的话,combiner会再次被调用.如果仅有2个或者更少的文件,没有必要调用combiner了.
如果mapper输出的文件相对较大,不利于在网络中传输,可以考虑下压缩,既能减少写入磁盘的时间开销,也能减小传输的压力.将mapreduce.map.output.compress设置为true即可,使用的压缩算法的库为mapreduce.map.output.compress.codec.是否使用压缩要看减小的网络传输和解压缩时间的对比,如果提升不大,则没有压缩的必要.
Reduce部分
一个reducer的partition输入,可能来自集群的很多个mapper的输出,每个mapper的数据到达时间是不定的,reduce任务一旦接收到数据,立刻开始拷贝,而且这些拷贝的操作是由不同的线程并行运行的,这样就可以接收来自不同的mapper的输出数据.通过设置mapreduce.reduce.shuffle.parallelcopies,可以实现线程数量的改变,默认的情况下该值为5.
如果map的输出文件很小,那么它们就会被拷贝到reduce任务的JVM内存中,否则会写入到磁盘.当在JVM内存中的数据,达到一个阈值时(由mapreduce.reduce.shuffle.merge.percent属性控制)或者map的输出达到一个阈值时(由mapreduce.reduce.merge.inmem.threshold属性控制),这些map输出数据开始merge,并spill到磁盘中,如果mapper输出文件存在压缩,则会在内存中被解压缩.如果merge过程中有combiner,则会被再次运行,以此减少写入磁盘的数据.当磁盘上的文件逐渐增多时,后台程序会将多个spill文件sort和merge成更大的文件.
当所有的map输出文件都已经被拷贝完成,reducer进入到sort阶段,也就是混合map输出文件,使数据保持有序的状态.混合的过程采用round的方式,例如如果有50个map输出文件,而混合因子是10( mapreduce.task.io.sort.facto),将会有5rounds去混合所有的文件,如下图所示:

值得注意的是,最后的一次round可以混合内存和磁盘的数据段.
hadoop之Shuffle和Sort的更多相关文章
- 【Hadoop】MapReduce笔记(三):MapReduce的Shuffle和Sort阶段详解
一.MapReduce 总体架构 整体的Shuffle过程包含以下几个部分:Map端Shuffle.Sort阶段.Reduce端Shuffle.即是说:Shuffle 过程横跨 map 和 reduc ...
- Hadoop : MapReduce中的Shuffle和Sort分析
地址 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Sch ...
- Partitioning, Shuffle and sort
Partitioning, Shuffle and sort what happened? - Partitioning Partitioning is the process of determi ...
- Hadoop-2.2.0中文文档—— MapReduce下一代- 可插入的 Shuffle 和 Sort
简单介绍 可插入的 shuffle 和 sort 功能,同意在shuffle 和 sort 逻辑中用可选择的实现类替换.这个情况的样例是:用一个不是HTTP的应用协议,如RDMA来 shuffle 从 ...
- Spark Shuffle之Sort Shuffle
源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正.原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowled ...
- shuffle和sort分析
MapReduce中的Shuffle和Sort分析 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的 ...
- mapreduce shuffle 和sort 详解
MapReduce 框架的核心步骤主要分两部分:Map 和Reduce.当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执 ...
- MapReduce中的Shuffle和Sort分析
MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme ...
- Hadoop :map+shuffle+reduce和YARN笔记分享
今天做了一个hadoop分享,总结下来,包括mapreduce,及shuffle深度讲解,还有YARN框架的详细说明等. v\:* {behavior:url(#default#VML);} o\:* ...
随机推荐
- Java 8-lambda表达式及方法引用
Lambda表达式 Lambda表达式是一个类似于匿名函数的语法糖,它实现一个函数式接口,它允许我们将函数当成参数传递给某个方法,或者把代码本身当作数据处理. 一个 Lambda 表达式可以有零个或多 ...
- oracle创建用户、表空间、临时表空间、分配权限步骤详解
首先登陆管理员账号,或者有DBA权限的用户,接下来依次: --查询所有用户select * from dba_users;--创建新用户create user gpmgt identified by ...
- 日期插件rolldate.js的使用
日期插件rolldate.js的使用 下载地址:http://www.jq22.com/jquery-info19834 效果: 代码: <!DOCTYPE html> <html ...
- 运行TensorFlow报错,“This program requires version 3.6.1 of the Protocol Buffer runtime library, but the installed version is 3.0.0.”
报错信息: [libprotobuf FATAL google/protobuf/src/google/protobuf/stubs/common.cc:67] This program requir ...
- 树莓派ubuntu系统下修改config.txt文件 树莓派config.txt文件修改记录
原文:https://www.raspberrypi.org/documentation/configuration/config-txt.md译文:http://my.oschina.net/fun ...
- Composer管理thinkphp版本
安装Composer 下载 Composer 安装前请务必确保已经正确安装了 PHP.打开命令行窗口并执行 php -v 查看是否正确输出版本号. 打开命令行并依次执行下列命令安装最新版本的 Comp ...
- skyline画折现bug代码
<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>加 ...
- 数据结构与算法之排序(2)选择排序 ——in dart
选择排序的算法复杂度与冒泡排序类似,其比较的时间复杂度仍然为O(N2),但减少了交换次数,交换的复杂度为O(N),相对冒泡排序提升很多.算法的核心思想是每次选出一个最小的,然后与本轮循环中的第一个进行 ...
- tensorflow 模型权重导出
tensorflow在保存权重模型时多使用tf.train.Saver().save 函数进行权重保存,保存的ckpt文件无法直接打开,不利于将模型权重导入到其他框架使用(如Caffe.Keras等) ...
- 20155328 2016-2017-2 《Java程序设计》第二周学习总结
20155328 2006-2007-2 <Java程序设计>第2周学习总结 教材学习内容总结 基本类型: 整数:short整数(占2字节).int整数(占4字节).long整数(占8字节 ...