MapRduce保证reducer的输入是按照key进行排过序的,原因和归并排序有关,在reducer接收到不同的mapper输出的有序数据后,需要再次进行排序,然后是分组排序,如果mapper输出的是有序数据,将减少reducer阶段排序的时间消耗.一般将排序以及Map的输出传输到Reduce的过程称为混洗(shuffle).Shuffle是MapReduce过程的核心,了解Shuffle非常有助于理解MapReduce的工作原理。如果你不知道MapReduce里的Shuffle是什么,那么请看下面这张图

  上图中明显分为两个大部分Map任务和Reduce任务,图中的红色虚线代表数据流的一个过程,下面分两部分进行说明:

MAP部分

  每一个mapper都有一个circular  buffer(环形缓存),环形缓冲区是一个先进先出的循环缓冲区,不用频繁的分配内存,而且在大多数情况下,内存的反复使用也使得我们能用更少的内存块做更多的事,默认情况下大小为100M(可以通过mapreduce.task.io.sort.mb来进行修改).Mapper的输出会首先写进这个缓存里面,当里面的内容达到一个阈值(mapreduce.map.sort.spill.percent,默认情况下为80%),一个后台线程就会开始向磁盘spill这些内容,同时Map将继续向该缓存区写内容.当缓存区写满时,Map被阻塞,直到spill过程完成才会被唤醒.Spills 将会循环写进 mapreduce.cluster.local.dir定义的目录下面,也就是说会产生多个spill磁盘文件.

  在spill过程写进磁盘之前还会做一些事情,步骤如下:

(1) 首先线程会先把写的内容分成多个分组,这个和reducer的分组是一致的,partitioner的算法请参考我的另外一篇文章:hadoop之定制自己的Partitioner

(2) 针对每一个分组,线程会实现内存的排序,排序的过程请参考另外一篇文章:hadoop之定制自己的sort过程

(3) 如果存在combiner的话,combiner会在sort之后,在每一个分组进行执行,combiner的执行会导致写到磁盘的数据减少.

  每一次环形缓存达到阈值,就会产生一个spill的文件,也就是说可能会产生很多个spill文件.在任务结束之前,这些文件会被合并为统一的带有分组和排好序的文件作为输出.其中mapreduce.task.io.sort.factor定义了一次合并的文件的最大个数,默认的个数为10.另外如果文件个数大于3的话,combiner会再次被调用.如果仅有2个或者更少的文件,没有必要调用combiner了.

  如果mapper输出的文件相对较大,不利于在网络中传输,可以考虑下压缩,既能减少写入磁盘的时间开销,也能减小传输的压力.将mapreduce.map.output.compress设置为true即可,使用的压缩算法的库为mapreduce.map.output.compress.codec.是否使用压缩要看减小的网络传输和解压缩时间的对比,如果提升不大,则没有压缩的必要.

Reduce部分

  一个reducer的partition输入,可能来自集群的很多个mapper的输出,每个mapper的数据到达时间是不定的,reduce任务一旦接收到数据,立刻开始拷贝,而且这些拷贝的操作是由不同的线程并行运行的,这样就可以接收来自不同的mapper的输出数据.通过设置mapreduce.reduce.shuffle.parallelcopies,可以实现线程数量的改变,默认的情况下该值为5.

  如果map的输出文件很小,那么它们就会被拷贝到reduce任务的JVM内存中,否则会写入到磁盘.当在JVM内存中的数据,达到一个阈值时(由mapreduce.reduce.shuffle.merge.percent属性控制)或者map的输出达到一个阈值时(由mapreduce.reduce.merge.inmem.threshold属性控制),这些map输出数据开始merge,并spill到磁盘中,如果mapper输出文件存在压缩,则会在内存中被解压缩.如果merge过程中有combiner,则会被再次运行,以此减少写入磁盘的数据.当磁盘上的文件逐渐增多时,后台程序会将多个spill文件sort和merge成更大的文件.

  当所有的map输出文件都已经被拷贝完成,reducer进入到sort阶段,也就是混合map输出文件,使数据保持有序的状态.混合的过程采用round的方式,例如如果有50个map输出文件,而混合因子是10( mapreduce.task.io.sort.facto),将会有5rounds去混合所有的文件,如下图所示:

值得注意的是,最后的一次round可以混合内存和磁盘的数据段.

hadoop之Shuffle和Sort的更多相关文章

  1. 【Hadoop】MapReduce笔记(三):MapReduce的Shuffle和Sort阶段详解

    一.MapReduce 总体架构 整体的Shuffle过程包含以下几个部分:Map端Shuffle.Sort阶段.Reduce端Shuffle.即是说:Shuffle 过程横跨 map 和 reduc ...

  2. Hadoop : MapReduce中的Shuffle和Sort分析

    地址 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Sch ...

  3. Partitioning, Shuffle and sort

    Partitioning, Shuffle and sort  what happened? - Partitioning Partitioning is the process of determi ...

  4. Hadoop-2.2.0中文文档—— MapReduce下一代- 可插入的 Shuffle 和 Sort

    简单介绍 可插入的 shuffle 和 sort 功能,同意在shuffle 和 sort 逻辑中用可选择的实现类替换.这个情况的样例是:用一个不是HTTP的应用协议,如RDMA来 shuffle 从 ...

  5. Spark Shuffle之Sort Shuffle

    源文件放在github,随着理解的深入,不断更新,如有谬误之处,欢迎指正.原文链接https://github.com/jacksu/utils4s/blob/master/spark-knowled ...

  6. shuffle和sort分析

    MapReduce中的Shuffle和Sort分析 MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的 ...

  7. mapreduce shuffle 和sort 详解

        MapReduce 框架的核心步骤主要分两部分:Map 和Reduce.当你向MapReduce 框架提交一个计算作业时,它会首先把计算作业拆分成若干个Map 任务,然后分配到不同的节点上去执 ...

  8. MapReduce中的Shuffle和Sort分析

    MapReduce 是现今一个非常流行的分布式计算框架,它被设计用于并行计算海量数据.第一个提出该技术框架的是Google 公司,而Google 的灵感则来自于函数式编程语言,如LISP,Scheme ...

  9. Hadoop :map+shuffle+reduce和YARN笔记分享

    今天做了一个hadoop分享,总结下来,包括mapreduce,及shuffle深度讲解,还有YARN框架的详细说明等. v\:* {behavior:url(#default#VML);} o\:* ...

随机推荐

  1. 在Eclipse中执行、配置Hadoop

    版权全部: zhe-jiang.he@hp.com  严禁转载! 1.安装插件 准备程序: eclipse-3.3.2(这个版本号的插件仅仅能用这个版本号的eclipse) hadoop-0.20.2 ...

  2. wordpress安装(ubuntu+nginx+php+mariadb)

    一.   环境 ubuntu12.04.4 nginx 1.6.0 mariadb 10.0 更新系统补丁 sudo apt-get update sudo apt-get dist-upgrade ...

  3. 闲话缓存:ZFS 读缓存深入研究-ARC(一)

    在Solaris ZFS 中实现的ARC(Adjustable Replacement Cache)读缓存淘汰算法真是很有意义的一块软件代码.它是基于IBM的Megiddo和Modha提出的ARC(A ...

  4. C#实体更新指定的字段

    接口类: /// <summary> /// 更新指定字段 /// </summary> /// <param name="entity">实体 ...

  5. Java Activiti 流程审批 后台框架源码 springmvc SSM 工作流引擎

    即时通讯:支持好友,群组,发图片.文件,消息声音提醒,离线消息,保留聊天记录 工作流模块-------------------------------------------------------- ...

  6. ES6读书笔记(二)

    前言 前段时间整理了ES6的读书笔记:<ES6读书笔记(一)>,现在为第二篇,本篇内容包括: 一.数组扩展 二.对象扩展 三.函数扩展 四.Set和Map数据结构 五.Reflect 本文 ...

  7. Docker安装(yum方式 centos7)

    yum install -y yum-utils device-mapper-persistent-data lvm2   yum-config-manager --add-repo http://m ...

  8. e.currentTarget与e.target

    e.currentTarget指的是注册了事件监听器的对象,而e.target指的是该对象里的子对象   html中 <div id="addBtn" v-on:click= ...

  9. tp5 的nginx配置

    下面简单说明一下tp5运行在nginx上的配置. 原文地址:小时刻个人博客>http://small.aiweimeng.top/index.php/archives/tp5_nginx.htm ...

  10. 【二】调通单机版的thrift-C++版本

    [任务2]调通单机版的thrift-C++版本 [任务2]调通单机版的thrift-C++版本 创建文件 安装boost开发工具 拷贝文件 [可忽略此步骤,如果c++代码直接编译无误的话] 编译 创建 ...