跟我学算法-吴恩达老师的logsitic回归
logistics回归是一种二分类问题,采用的激活函数是sigmoid函数,使得输出值转换为(0,1)之间的概率
A = sigmoid(np.dot(w.T, X) + b ) 表示预测函数
dz = A - Y , A 表示的是预测结果, y 表示的是实际结果
cost = -y*logA - (1-y)*log(1-A) #表示损失函数
dw = np.dot(X, dz.T)/m
db = np.sum(dz)/m
w := w - a*dw # 更新w,a 表示学习率
b : = b - a*db #更新b
第一步: 定义lr_utils.py 导入数据
import numpy as np
import h5py def load_dataset():
train_dataset = h5py.File('datasets/train_catvnoncat.h5', 'r')
train_set_x_orig = np.array(train_dataset['train_set_x'][:])
train_set_y = np.array(train_dataset['train_set_y'][:]) test_dataset = h5py.File('datasets/test_catvnoncat.h5', 'r')
test_set_x_orig = np.array(test_dataset['test_set_x'][:])
test_set_y = np.array(test_dataset['test_set_y'][:]) # 对矩阵预测值的维度构造成(1, train_set_x_orig.shape[0]) 即一张照片一个预测值
train_set_y = train_set_y.reshape((1, train_set_x_orig.shape[0]))
test_set_y = test_set_y.reshape((1, test_set_x_orig.shape[0])) classes = np.array(test_dataset["list_classes"][:]) return train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes
第二步:调用函数,进行数据导入
import numpy as np
import matplotlib.pyplot as plt
import h5py
import scipy
from PIL import Image
from scipy import ndimage
from lr_utils import load_dataset train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = load_dataset() # 查看图片
index = 7
plt.imshow(train_set_x_orig[7])
plt.show() #训练集的图片个数
m_train = train_set_x_orig.shape[0]
m_test = test_set_x_orig.shape[0]
# 图片的尺寸
num_px = train_set_x_orig.shape[1] # 对每张图片的像素点进行一个竖直排列[x1, x2, x3, x4]
train_set_x_flatten = train_set_x_orig.reshape(m_train, -1).T
test_set_x_flatten = test_set_x_orig.reshape(m_test, -1).T # 进行像素点归一化
train_set_x = train_set_x_flatten / 255
test_set_x = test_set_x_flatten / 255
第三步:定义sigmoid函数和进行参数初始化
def sigmoid(z):
return 1/(1+np.exp(-z)) s = sigmoid(np.array([[0, 2]])) def initialize_with_zeros(dim): w = np.zeros((dim, 1), dtype=float)
b = 0.0 return w, b
第四步:定义反向传播函数
def propgate(w, b, X, Y):
m = X.shape[1]
# 预测函数
A = sigmoid(np.dot(w.T, X) + b)
# 预测函数与真实值之差
dz = A - Y
# A与w的导数
dw = 1/m * np.dot(X, dz.T)
# b与w的导数
db = 1/m * np.sum(dz, axis=1)
#损失函数
cost = np.sum(-Y * np.log(A) - (1 - Y) * np.log(1 - A), axis=1) / m
#更新参数的幅度
grade = {'dw':dw, 'db':db}
#损失函数
cost = np.squeeze(cost) return cost, grade
第5步:通过反向传播函数, 训练样本
# 迭代优化 def optimize(w, b, X, Y, num_iteration, learning_rate, print_cost):
# w, b 为初始参数, X, Y为训练集的变量和标签, num_iteration为训练次数, learning_rate为学习率, print_cost为是否打印
now_num_iteration = 0
costs = []
for i in range(num_iteration): cost, grade = propgate(w, b, X, Y) dw = grade['dw']
db = grade['db'] w = w - learning_rate*dw
b = b - learning_rate*db
now_num_iteration += 1 if i%100 == 0:
costs.append(cost) if print_cost and i%100:
print(cost, i) param = {'w':w,
'b':b}
grade = {'dw':dw,
'db':db}
第6步:定义预测函数,使用的是前向传播函数
def predict(w, b, X):
# w,b表示参数,X表示的是输入的图片,y轴表示图片的数目
# m表示预测的图片的数目
m = X.shape[1]
Y_prediction = np.zeros((1, m))
w = w.reshape(X.shape[0], 1)
A = sigmoid(np.dot(w.T, X) + b)
# 概率大于0.5,预测结果为1
for i in range(A.shape[1]):
if A[0, i] > 0.5:
Y_prediction[0, i] = 1 return Y_prediction
第7步:定义最终的训练模型, 输出训练的准确度
def model(train_set_x, train_set_y, test_set_x, test_set_y, num_iteration, learning_rate, print_cost): m = train_set_x.shape[0]
# 创建初始值
w, b = initialize_with_zeros(m)
costs, param, grade = optimize(w, b,train_set_x, train_set_y,
num_iteration, learning_rate, print_cost)
w = param['w']
b = param['b'] Y_train_prediciton = predict(w, b, train_set_x)
Y_test_prediction = predict(w, b, test_set_x)
# 输出训练的准确度
print('train_accuracy {}'.format(100 - np.mean(np.abs(Y_train_prediciton - train_set_y))*100))
print('test_accuracy {}'.format(100 - np.mean(np.abs(Y_test_prediction - test_set_y ))*100)) d = {'costs':costs,
'Y_train_prediciton':Y_train_prediciton,
'Y_test_prediction':Y_test_prediction,
'w':w,
'b':b,
'learning_rate':learning_rate,
'num_iteration': num_iteration} return d
第8步:我们挑选一张猫的图片进行预测
# 预测图片
my_image = "cat_1.jpg" # change this to the name of your image file
## END CODE HERE ## # We preprocess the image to fit your algorithm.
fname = "images/" + my_image
image = np.array(ndimage.imread(fname, flatten=False))
# 重构模型大小, 使得模型的shape为(:,1)
my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((1, num_px*num_px*3)).T
# 输出预测的结果
my_predicted_image = predict(d['w'], d['b'], my_image)
plt.imshow(image)
print("y = " + str(np.squeeze(my_predicted_image)) + ", your algorithm predicts a \"" + classes[int(np.squeeze(my_predicted_image)),].decode("utf-8") + "\" picture.")
跟我学算法-吴恩达老师的logsitic回归的更多相关文章
- 跟我学算法-吴恩达老师(超参数调试, batch归一化, softmax使用,tensorflow框架举例)
1. 在我们学习中,调试超参数是非常重要的. 超参数的调试可以是a学习率,(β1和β2,ε)在Adam梯度下降中使用, layers层数, hidden units 隐藏层的数目, learning_ ...
- 跟我学算法-吴恩达老师(mini-batchsize,指数加权平均,Momentum 梯度下降法,RMS prop, Adam 优化算法, Learning rate decay)
1.mini-batch size 表示每次都只筛选一部分作为训练的样本,进行训练,遍历一次样本的次数为(样本数/单次样本数目) 当mini-batch size 的数量通常介于1,m 之间 当 ...
- 机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 http://www.ai-start.com/
机器学习爱好者 -- 翻译吴恩达老师的机器学习课程字幕 GNU Octave 开源 MatLab http://www.ai-start.com/ https://zhuanlan.zhihu ...
- 吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货
吴恩达讲了干货满满的一节全新AI课,全程手写板书充满诚意非常干货 摘要: 目前,AI技术做出的经济贡献几乎都来自监督学习,也就是学习从A到B,从输入到输出的映射.现在,监督学习.迁移学习.非监督学习. ...
- 吴恩达最新TensorFlow专项课程开放注册,你离TF Boy只差这一步
不需要 ML/DL 基础,不需要深奥数学背景,初学者和软件开发者也能快速掌握 TensorFlow.掌握人工智能应用的开发秘诀. 以前,吴恩达的机器学习课程和深度学习课程会介绍很多概念与知识,虽然也会 ...
- 吴恩达(Andrew Ng)——机器学习笔记1
之前经学长推荐,开始在B站上看Andrew Ng的机器学习课程.其实已经看了1/3了吧,今天把学习笔记补上吧. 吴恩达老师的Machine learning课程共有113节(B站上的版本https:/ ...
- 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)
学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...
- 吴恩达深度学习 反向传播(Back Propagation)公式推导技巧
由于之前看的深度学习的知识都比较零散,补一下吴老师的课程希望能对这块有一个比较完整的认识.课程分为5个部分(粗体部分为已经看过的): 神经网络和深度学习 改善深层神经网络:超参数调试.正则化以及优化 ...
- Coursera课程《Machine Learning》吴恩达课堂笔记
强烈安利吴恩达老师的<Machine Learning>课程,讲得非常好懂,基本上算是无基础就可以学习的课程. 课程地址 强烈建议在线学习,而不是把视频下载下来看.视频中间可能会有一些问题 ...
随机推荐
- Vue跨路由触发事件,Vue监听sessionStorage
近来,在做公司的聊天系统,引用的是极光的api.项目需求实时监听别人发过来的消息,进行渲染到页面,还有历史记录也要渲染,历史记录和实时聊天记录返回的结构体还不一样,看到需求的我欲哭无泪,首先登录是在首 ...
- Intellij Idea 将java项目打包成jar
1.菜单:File->project stucture 2.在弹窗最左侧选中Artifacts->"+",选jar,选择from modules with depend ...
- phython
转载 http://www.cnblogs.com/chenny7/p/4062693.html
- easyui combotree 异步树 前端写法js
简要说下使用场景: combotree下拉框第一次加载时,请求一个接口,页面上展示顶层节点们(可以理解为最顶层的节点,比如所有的一级公司): 当点击其中一个节点前面的小三角展开时,再次请求服务器接口( ...
- github打开慢,页面打不开,请求老是失败问题修复总结
感谢老铁 QQ(1218624820) 提供的方法建议 原因来自于DNS污染, 到下面的目录进行修改文件 C:\Windows\System32\drivers\etc 在后面粘贴下面的信息 192. ...
- linux vi常用操作
1.基本操作 进入vi vi 或者 vim 进入一个文件或者新建一个文件 例如:vim 11.txt vi有3种模式 一般模式:刚进入时.按esc时. 编辑模式:按下字母[i, I, o, O, a, ...
- ringojs 基于jvm 的javascript 平台试用
ringojs 是一个基于jvm 的javascript 平台,支持commonjs 模块模式 安装 下载包配置环境变量,或者使用docker,测试使用docker dockerfile deb 包安 ...
- java的堆和栈
初始入门嗯:https://www.cnblogs.com/SaraMoring/p/5687466.html 堆空间:new出来的数组和对象,对象和数组没有引用指向它的时候,等待下一次垃圾回收 栈空 ...
- springboot利用MockMvc测试controller控制器
主要记录一下控制器的测试,service这些类测试相对简单些(可测试性强) API测试需求比较简单: ① 需要返回正确的http状态码 200 ② 需要返回json数据,并且不能返回未经捕获的系统异常 ...
- python 内置方法的时间复杂度
好文,非常值得参考 http://www.orangecube.net/python-time-complexity