【贪心】【P4053】[JSOI2007] 建筑抢修
【贪心】【P4053】[JSOI2007] 建筑抢修
Description
有 \(n\) 个工作,第 \(i\) 个工作做完需要 \(a_i\) 的时间,并且必须在 \(b_i\) 时刻前完成。求最多能按时完成多少个工作
Limitations
\(1 \leq n \leq 150000\),\(1 \leq a_i \leq b_i \leq 2147483647\)
Solution
随机跳题跳到一个看上去很经典的贪心,以前只听说过从来没做到过题。
首先一个显然的结论是,对于完成工作的顺序序列 \(p\),如果我将 \(p\) 里面的元素按照 \(b_i\) 单调不降的顺序排序,得到的序列一定也是一个合法的能够完成序列内所有工作的序列。证明上可以考虑相邻两项,如果前面一项比后面一项的 \(b\) 大,那么交换相邻两项一定也可以完成任务。数学归纳得到按照 \(b\) 的不降序排序是合法的。例如,如果 \(\{1,~5,~3\}\) 的顺序可以完成 \(3\) 项任务,并且 \(b_1 \leq b_3 \leq b_5\),那么 \(\{1,~3,~5\}\) 一定也可以完成三项任务。
因此我们直接对任务序列按照 \(b\) 不降序排序,依次考虑是否选择每个任务。
考虑枚举到一个任务时,如果我们已经选择的任务用时加上该任务的用时不会超出该任务的时限,那么我们先贪心的将它选入任务序列。
考虑如果选入这个任务超时了,那么我们考虑将前面一个任务去掉,从而让这个任务被选入。显然所有任务的总用时越低越好,因从我们考虑去掉前面用时最长的任务,如果前面用时最长的任务比当前任务用时长,那么去掉前面的任务后当前任务一定能被选入,因为总用时减少但是时限增加了。并且我们在保证任务总数不变的情况下尽可能减少了总用时。因此这个贪心是正确的。当然如果前面最长的不如当前用时长,那就不再选入当前任务。
用堆去维护所有被选入的任务的时常即可。时间复杂度 \(O(n \log n)\)
Code
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#define int ll
#endif
typedef long long ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
int top=0;
do {OPT::buf[++top] = static_cast<char>(x % 10 + '0');} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 150005;
int n, timeused, ans;
int A[maxn], B[maxn], MU[maxn];
struct Cmp {
inline bool operator()(const int a, const int b) {
return (A[a] == A[b]) ? (a < b) : (A[a] < A[b]);
}
};
bool cmp(const int x, const int y);
std::priority_queue<int, std::vector<int>, Cmp> Q;
signed main() {
freopen("1.in", "r", stdin);
qr(n);
for (int i = 1; i <= n; ++i) {
qr(A[i]); qr(B[i]); MU[i] = i;
}
std::sort(MU + 1, MU + 1 + n, cmp);
for (int p = 1, i = MU[p]; p <= n; i = MU[++p]) {
if ((timeused + A[i]) > B[i]) {
if (A[Q.top()] > A[i]) {
timeused -= A[Q.top()];
Q.pop();
--ans;
}
}
if ((timeused + A[i]) <= B[i]) {
Q.push(i);
timeused += A[i];
++ans;
}
}
qw(ans, '\n', true);
return 0;
}
inline bool cmp(const int x, const int y) {
return (B[x] != B[y]) ? (B[x] < B[y]) : (x < y);
}
【贪心】【P4053】[JSOI2007] 建筑抢修的更多相关文章
- 洛谷——P4053 [JSOI2007]建筑抢修
P4053 [JSOI2007]建筑抢修 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有N个建筑设施受到了严重的 ...
- 洛谷 P4053 [JSOI2007]建筑抢修
传送门 思路 首先题意比较容易明白: n个建筑需要修复,只能同时修一个建筑,每个建筑修复需要t1时间,且必须在t2时间前修完,否则此建筑报废 问最多能修好多少个建筑 如果一个建筑在规定时间内没有修好的 ...
- P4053 [JSOI2007]建筑抢修
题目描述 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有N个建筑设施受到了严重的损伤,如果不尽快修复的话,这些建 ...
- P4053 [JSOI2007]建筑抢修 堆贪心
思路:堆贪心 提交:1次 题解: 先按时间\(sort\),然后如果能修就直接扔堆里,不能修取堆顶比一下时间长短,把时间短的扔进堆: #include<cstdio> #include&l ...
- Luogu P4053 [JSOI2007]建筑抢修
一道贪心题,看数据范围就知道要套一个数据结构上去. 别走啊不是什么很高级的数据结构 考虑最朴素的想法,按建筑的抢修时间排序并先拿小的 然后随便想想都可以找到一堆反例 所以我们就直接考虑模拟这个过程,按 ...
- 洛谷P4053 [JSOI2007]建筑抢修
放题解 题目传送门 放代码 #include <bits/stdc++.h>//万能头 #define MAXN 150000//最多的建筑数量(数据范围) using namespace ...
- 题解-------P4053 [JSOI2007]建筑抢修
传送门 贪心+左偏树 贪心思路:先修快炸的楼 所以我们可以按照$T2$从大到小做一遍排序,然后从$1\cdots n$一个一个去修,如果这栋楼不能修(也就是当前时间已经超过$T2_{i}$),那我们就 ...
- BZOJ1029: [JSOI2007]建筑抢修[模拟 贪心 优先队列]
1029: [JSOI2007]建筑抢修 Time Limit: 4 Sec Memory Limit: 162 MBSubmit: 3785 Solved: 1747[Submit][Statu ...
- BZOJ 1029: [JSOI2007]建筑抢修 堆+贪心
1029: [JSOI2007]建筑抢修 Description 小刚在玩JSOI提供的一个称之为“建筑抢修”的电脑游戏:经过了一场激烈的战斗,T部落消灭了所有z部落的入侵者.但是T部落的基地里已经有 ...
随机推荐
- 关于 AutoResetEvent 的介绍的简单示例
关于 AutoResetEvent 的介绍的简单示例 直接贴代码了: class Program { static void Main(string[] args) { string result = ...
- Java中Deque特性及API
美人如斯,文章如斯! 定义 双向队列:支持插入删除元素的线性集合 特性: 插入.删除.获取操作支持两种形式:快速失败和返回null或true/false 既具有FIFO特点又具有LIFO特点,即是队列 ...
- Linux 笔记 - 第二十三章 MySQL 主从复制配置
一.前言 MySQL Replication,也被称为主从复制.AB 复制.简单来说就是 A 和 B 两台服务器做主从后,在 A 服务器上写入数据,B 服务器上也会跟着写入输入,两者之间的数据是实时同 ...
- asp.net web 项目 针对aspx和ashx的 IHttpHandlerFactory 开发
ASP.NET Framework处理一个Http Request的流程: HttpRequest-->inetinfo.exe-->ASPNET_ISAPI.dll-->ASPNE ...
- asp.net core不通过构造方法从容器中获取对象及解决通过这种方法NLog获取对象失败的问题
一般想从容器中获取对象,我们都是通过构造方法获取对象,但有些条件不允许不能通过构造方法获取对象,我们必须单独从容器中单独创建获取找个对象,这样我们就不行把找个容器静态保存起来供全局diaoy 一. 简 ...
- ArrayList集合的
import java.util.ArrayList; /* * 如果想向集合ArrayList中存储基本数据类型,必须使用基本数据类型的“包装类” * * 基本类型 包装类(引用类型,包装类型都位于 ...
- HighChat 动态绑定数据(二)
也是对最近几天的折线图搞得烦心,看了好多前辈的文章,也总结了一下. 1.先看后台程序,这是我模拟的一些参数 就是一个字符串.没啥好说的 public ActionResult Index2() { s ...
- Python 字符串多替换时性能基准测试
结论 先说结果, 直接替换是最好的. replace 一层层用, 方法笨了一点, 还可以. 时间消耗: tx2 < tx3 < tx1 < tx4 t2 < t3 < t ...
- centos7启动redis命令
redis安装 yum install redis 安装完成后redis.conf配置文件默认在 /etc/redis.conf 启动命令: redis-server /etc/redis.conf
- Fiddler模拟响应
1 启用规则 2 不匹配的规则通过,不勾选会导致不匹配的请求失败 3 匹配url 4 响应信息,Fiddler内置了一些响应脚步,你也可以选择一个保护响应信息的文本文件