solution

\(y^2-x^2=ax+b\)

\(y^2=x^2+ax+b\)

当\(x^2+ax+b\)为完全平方式时\(Ans=inf\)

\(x \leq y\) 不妨令 \(y=x+t\)

\(x^2+2xt+t^2=x^2+ax+b\)

\(2xt-ax=b-t^2\)

\(x\times(2t-a)=b-t^2\)

\(x=\frac{b-t^2}{2t-a}\)

枚举,找一下使得\(x\)为自然数的\(t\),统计个数即为\(Ans\)

#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#define int long long
using namespace std; int A,B,Ans; signed main()
{
scanf("%lld%lld",&A,&B);
if(A%2==0&&A*A/4==B){
puts("inf");
return 0;
}
int L1=sqrt(B),L2=A/2;
if(L1>L2) swap(L1,L2);
for(int i=max(L1-1,0ll);i<=L2+1;++i){
if(i*2==A||((B-i*i)<0&&(2*i-A)>0)||((B-i*i)>0&&(2*i-A)<0)) continue;
if((B-i*i)%(2*i-A)==0) ++Ans;
}
printf("%lld\n",Ans);
return 0;
}

【洛谷P5596】【XR-4】题的更多相关文章

  1. 洛谷 P5596 【XR-4】题

    洛谷 P5596 [XR-4]题 洛谷传送门 题目描述 小 X 遇到了一道题: 给定自然数 a,ba,b,求满足下列条件的自然数对 (x,y)(x,y) 的个数: y^2 - x^2 = ax + b ...

  2. 洛谷 P2791 幼儿园篮球题

    洛谷 P2791 幼儿园篮球题 https://www.luogu.org/problemnew/show/P2791 我喜欢唱♂跳♂rap♂篮球 要求的是:\(\sum_{i=0}^kC_m^iC_ ...

  3. 洛谷 P2220 [HAOI2012]容易题 数论

    洛谷 P2220 [HAOI2012]容易题 题目描述 为了使得大家高兴,小Q特意出个自认为的简单题(easy)来满足大家,这道简单题是描述如下: 有一个数列A已知对于所有的A[i]都是1~n的自然数 ...

  4. 在洛谷3369 Treap模板题 中发现的Splay详解

    本题的Splay写法(无指针Splay超详细) 前言 首先来讲...终于调出来了55555...调了整整3天..... 看到大部分大佬都是用指针来实现的Splay.小的只是按照Splay的核心思想和原 ...

  5. 洛谷 P4145 上帝造题的七分钟2 / 花神游历各国

    洛谷 这题就是区间开根号,区间求和.我们可以分块做. 我们记布尔数组vis[i]表示第i块中元素是否全部为1. 因为显然当一个块中元素全部为1时,并不需要对它进行根号操作. 我们每个块暴力开根号,因为 ...

  6. 洛谷 P5596 【XR-4】题 题解

    原题链接 本题只要 推式子 就可以了. \[y^2-x^2=ax + b \] \[a x + x^2 = y^2 - b \] \[4 x^2 + 4 ax = 4 y^2 - 4b \] \[(2 ...

  7. 洛谷P1072Hankson的趣味题题解

    题目 一道十分经典的数论题,在考场上也可以用暴力的算法来解决,从而得到\(50pts\)的较为可观的分数,而如果想要AC的话,我们观察原题给的数据范围\(a,b,c,d\)(为了好表示,分别代表a1, ...

  8. 洛谷P4145 上帝造题的⑦minutes ②

    又是线段树. 区间开平方求和,套路题. 如果开到了1就不用再开下去了,否则直接到底. 记得 l > r 时交换 l r #include <cstdio> #include < ...

  9. 洛谷P1926 小书童—刷题大军【01背包】

    题目链接:https://www.luogu.org/problemnew/show/P1926 题目背景 数学是火,点亮物理的灯:物理是灯,照亮化学的路:化学是路,通向生物的坑:生物是坑,埋葬学理的 ...

随机推荐

  1. linux安装mysql后报错启动不了Starting MySQL. ERROR! The server quit without updating PID file (/var/lib/mysql/localhost.localdomain.pid).

    今天安装完Mysql后,开启发生了错误: 2.打开错误信息文件,查看错误原因是:Plugin 'FEDERATED' is disabled. /usr/sbin/mysqld: Table 'mys ...

  2. (转)Python_如何把Python脚本导出为exe程序

    原文地址:https://www.cnblogs.com/robinunix/p/8426832.html 一.pyinstaller简介 Python是一个脚本语言,被解释器解释执行.它的发布方式: ...

  3. 浮动IP地址(Float IP)与 ARP欺骗技术

    浮动IP地址: 一个网卡是可以添加多个IP的. 就是多个主机工作在 同一个集群中,即两台主机以上.每台机器除了自己的实IP外,会设置一个浮动IP,浮动IP与主机的服务(HTTP服务/邮箱服务)绑在一起 ...

  4. go install -v github.com/gopherjs/gopherjs报错提示go cannot find package "golang.org/x/crypto/ssh/terminal" 解决方案

    1前言 方法一:go get 方法二: github clone 2 方法方法一:go get go get golang.org/x/crypto/ssh/terminal 但是这种方法容易被墙,出 ...

  5. Linux系统快速入门方法

    相信看到这篇文章的你一定是想要学习Linux,或者已经在学习Linux的人了,那我们就可以一起探讨一下,学习Linux如何快速入门呢? 首先,希望大家弄清楚自己为什么要学习Linux,有的人是因为兴趣 ...

  6. Java中new和Class.forName的区别

    首先:New = Class.forName("pacage.A").newInstance(); new是关键字,直接创建对象.Class.forName()是一个方法,要求JV ...

  7. C#对MongDB取数据的常用代码

    1.使用聚合取最新的实时数据(每一个测站有多条数据,取日期最新的数据.也就是每个测站取最新的值) var group = new BsonDocument { {"_id",new ...

  8. Flask项目-循环导入及蓝图

    在学习flask时,肯定有许多人好奇,为什么一定要使用蓝图,而不能直接使用app应用程序对象导来导去,很多可能会说那是由于 循环导入的缘故,但是当我们通过url访问视图函数的时候,为什么会报404 n ...

  9. Java-最常用的Java日志框架整理

    Java-最常用的Java日志框架整理 前言 Java程序员,我们开发了很多Java应用程序,包括桌面应用.WEB应用以及移动应用.然而日志系统是一个成熟Java应用所必不可少的,在开发和调试阶段,日 ...

  10. Zabbix 完整的监控流程

    目录 1.Zabbix的监控历程概念 1.1 基本概念 1.2 流程图 2.创建主机并加入主机组 3.添加新加主机的应用集(aplication) 4.添加监控项(item) 5.告警触发器配置(Tr ...