【题解】Luogu P5319 [BJOI2019]奥术神杖
原题传送门
题目让我们最大化\(val=\sqrt[k]{\prod_{i=1}^k w_i}\),其中\(k\)是咒语的个数,\(w_i\)是第\(i\)个咒语的神力
看着根号和累乘不爽,我们两边同取\(\ln\)
$$\ln val=\frac{1}{k}\sum_{i=1}^k \ln w_i$$
易知当\(\ln val\)最大化时,\(val\)也最大化。所以我们将问题转化成了最大化\(\frac{1}{k}\sum_{i=1}^k \ln w_i\),我们发现这是算数平均数。我们珂以通过二分答案找到它的最大值,问题就是二分答案如何check是否合法:
当\(\frac{1}{k}\sum_{i=1}^k \ln w_i>mid\)时才合法
即当\(\sum_{i=1}^k(w_i-mid)>0\)时才合法
我们先对所有咒语建AC自动机,在上面跑dp求出\(\sum_{i=1}^k(w_i-mid)\)的最大值,判断是否可行
具体dp:就像其他很多AC自动机上的dp一样,设\(f[i][j]\)表示神杖前\(i\)个字符,匹配到了AC自动机上\(j\)号节点,依照套路转移,就是不要忘了题目原有的限制
此算法精度误差较大,但本题还是珂以通过
#include <bits/stdc++.h>
#define db double
#define N 1505
#define eps 1e-6
using namespace std;
inline int read()
{
register int x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9')x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*f;
}
int n,m;
char T[N],s[N],ans[N];
db V[N],val[N],f[N][N];
pair<int,int> pre[N][N];
struct node{
int son[10],fail,cnt;
db val;
}tr[N];
int tot=0;
inline void Insert(register char *s,register db v)
{
int len=strlen(s+1),now=0;
for(register int i=1;i<=len;++i)
{
if(!tr[now].son[s[i]-'0'])
tr[now].son[s[i]-'0']=++tot;
now=tr[now].son[s[i]-'0'];
}
++tr[now].cnt,tr[now].val+=v;
}
inline void getfail()
{
queue<int> q;
for(register int i=0;i<10;++i)
if(tr[0].son[i])
q.push(tr[0].son[i]);
while(!q.empty())
{
int u=q.front();
q.pop();
tr[u].cnt+=tr[tr[u].fail].cnt;
tr[u].val+=tr[tr[u].fail].val;
for(register int i=0;i<10;++i)
{
if(tr[u].son[i])
{
tr[tr[u].son[i]].fail=tr[tr[u].fail].son[i];
q.push(tr[u].son[i]);
}
else
tr[u].son[i]=tr[tr[u].fail].son[i];
}
}
}
inline void updateans(register int i,register int j)
{
if(!i)
return;
updateans(i-1,pre[i][j].first);
ans[i]=pre[i][j].second+'0';
}
inline bool check(register db mid)
{
memset(f,-0x3f,sizeof(f));
db inf=-f[0][0];
f[0][0]=0;
for(register int i=1;i<=n;++i)
for(register int j=0;j<=tot;++j)
{
if(fabs(f[i-1][j]+inf)<1)
continue;
if(T[i]=='.')
{
for(register int k=0;k<10;++k)
{
int v=tr[j].son[k];
if(f[i-1][j]+tr[v].val-tr[v].cnt*mid>f[i][v])
{
f[i][v]=f[i-1][j]+tr[v].val-tr[v].cnt*mid;
pre[i][v]=make_pair(j,k);
}
}
}
else
{
int k=T[i]-'0',v=tr[j].son[k];
if(f[i-1][j]+tr[v].val-tr[v].cnt*mid>f[i][v])
{
f[i][v]=f[i-1][j]+tr[v].val-tr[v].cnt*mid;
pre[i][v]=make_pair(j,k);
}
}
}
int pos=0;
for(register int i=1;i<=tot;++i)
if(f[n][i]>f[n][pos])
pos=i;
if(f[n][pos]>eps)
{
updateans(n,pos);
return 1;
}
else
return 0;
}
int main()
{
n=read(),m=read();
scanf("%s",T+1);
db L=0,R=0;
for(register int i=1;i<=m;++i)
{
scanf("%s",s+1);
V[i]=log(read());
R=max(R,V[i]);
Insert(s,V[i]);
}
getfail();
while(R-L>eps)
{
db mid=(L+R)/2.0;
if(check(mid))
L=mid;
else
R=mid;
}
for(register int i=1;i<=n;++i)
putchar(ans[i]);
return 0;
}
【题解】Luogu P5319 [BJOI2019]奥术神杖的更多相关文章
- luogu P5319 [BJOI2019]奥术神杖
传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所 ...
- luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP)
luoguP5319 [BJOI2019]奥术神杖(分数规划,AC自动机DP) Luogu 题解时间 难点在于式子转化,设有c个满足的子串,即求最大的 $ ans = \sqrt[c]{\prod_{ ...
- [BJOI2019]奥术神杖(分数规划,动态规划,AC自动机)
[BJOI2019]奥术神杖(分数规划,动态规划,AC自动机) 题面 洛谷 题解 首先乘法取\(log\)变加法,开\(c\)次根变成除\(c\). 于是问题等价于最大化\(\displaystyle ...
- [BJOI2019]奥术神杖——AC自动机+DP+分数规划+二分答案
题目链接: [BJOI2019]奥术神杖 答案是$ans=\sqrt[c]{\prod_{i=1}^{c}v_{i}}=(\prod_{i=1}^{c}v_{i})^{\frac{1}{c}}$. 这 ...
- 题解 [BJOI2019]奥术神杖
题目传送门 题目大意 给出一个残缺的字符串,每个位置都 \(\in[0,9]\).有 \(m\) 中贡献,即 \(s,k\),表示该字符串中没出现一次 \(s\),贡献便乘上 \(k\).最后对贡献求 ...
- [BJOI2019]奥术神杖
https://www.luogu.org/problemnew/show/P5319 题解 首先观察我们要求的答案的形式: \[ \biggl(\prod V_i \biggr)^x\ \ \ x= ...
- [BJOI2019]奥术神杖(分数规划+AC自动机+DP)
题解:很显然可以对权值取对数,然后把几何平均值转为算术平均值,然后很显然是分数规划.先对每个模式串建立AC自动机,每个节点w[i],sz[i]分别表示以其为前缀的字符串,然后再二分最优解k,然后w[i ...
- #loj3089 [BJOI2019]奥术神杖
卡精度好题 最关键的一步是几何平均数的\(ln\)等于所有数字取\(ln\)后的算术平均值 那么现在就变成了一个很裸的01分数规划问题,一个通用的思路就是二分答案 现在来考虑二分答案的底层怎么写 把所 ...
- [BJOI2019]奥术神杖(AC自动机,DP,分数规划)
题目大意: 给出一个长度 $n$ 的字符串 $T$,只由数字和点组成.你可以把每个点替换成一个任意的数字.再给出 $m$ 个数字串 $S_i$,第 $i$ 个权值为 $t_i$. 对于一个替换方案,这 ...
随机推荐
- 【案例】大型摩托制造企业如何高效排产?看APS系统如何帮忙
江门市大长江集团有限公司(下文简称,大长江集团)创建于1991年11月,是豪爵控股下属子公司. 大长江生产计划管理从最初的电子表格Excel 公式辅助计算,发展到按公司业务需求,利用Excel VBA ...
- java 使用tess4j实现OCR的最简单样例
网上很多教程没有介绍清楚tessdata的位置,以及怎么配置,并且对中文库的描述也存在问题,这里介绍一个最简单的样例. 1.使用maven,直接引入依赖,确保你的工程JDK是1.8以上 <dep ...
- 剑指:包含min函数的栈(min栈)
题目描述 设计一个支持 push,pop,top 等操作并且可以在 O(1) 时间内检索出最小元素的堆栈. push(x)–将元素x插入栈中 pop()–移除栈顶元素 top()–得到栈顶元素 get ...
- 指针专题6-空指针NULL和void指针
1 NULL指针 一个指针变量可以指向计算机中任何一块内存,不管该内存有没有被分配,也不管该内存有没有使用权限,只要把地址给他,他就可以指向.C语言没有一种机制保证指向内存的正确性,程序员必须自己提高 ...
- Windows Server安装FileZilla服务端
1.下载 地址: https://filezilla-project.org/download.php?type=server 点击下载 2. 安装较为简单, 不详细介绍,下面说配置 2.1 添加用户 ...
- Networking POJ - 1287
题目链接:https://vjudge.net/problem/POJ-1287 思路:最小生成树板子题 #include <iostream> #include <cstdio&g ...
- PHP中md5()函数绕过
PHP md5()函数的简单绕过方法,该篇作为学习笔记简单记录一下. 例题 例题链接: http://ctf5.shiyanbar.com/web/houtai/ffifdyop.php ...
- JAVA并发-对象方法wait
最简单的东西,往往包含了最复杂的实现,因为需要为上层的存在提供一个稳定的基础,Object作为java中所有对象的基类,其存在的价值不言而喻,其中wait和notify方法的实现多线程协作提供了保证. ...
- CSS布局对齐的小技巧
类似以上这种对齐怎么做? 很简单,上面是的污水开始的位置是由于被"能源种类"顶着,下面没有字怎么办?最差的办法就是用margin-left,因为在不同的机器上,可能会出现兼容性问题 ...
- Super Fish
Super fish is a common fun and leisure game. It's a game that tests your intelligence and memory ...