import tensorflow as tf
import numpy as np def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2 def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = np.linalg.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist if __name__=='__main__':
batch_size = 3
num_point = 10
num_features = 3
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print (array1)
#print(array2)
print('numpy: ', chamfer_distance_numpy(array1, array2))

  

chamfer_pcd的更多相关文章

随机推荐

  1. java项目部署

    本文章只为帮助大家学习项目的发布,为基础篇,在此给大家示范在window环境下的项目部署及运维. 以下版本为讲解示例,可自行改至匹配版本. 服务器:window service2008 R2 Stan ...

  2. page内置对象

  3. selenium原理解析

    相信很多测试小伙伴儿都听过或者使用过web自动化selenium,那您有没有研究过selenium的原理呢?为什么要使用webdriver.exe,webdriver.exe是干啥用的?seleniu ...

  4. js form 表单使用

    <!--表单所有标签--> <form action="" method="" name=""> 单行文本框:< ...

  5. 2019.12.11 java练习

    class Demo01 { public static void main(String[] args) { //数组求最大值 int[] arr={1,2,3,4,5,6,7,8,9}; int ...

  6. Dump文件的校验查看工具

    当我们抓取到Dump文件后,我们抓取的方式对不对,是否包含了我们想要的信息,可不可用,又或这个文件在抓取或传输过程种,有没有损坏,又或者我不想用Windbg进行细致的分析,只想大概了解下异常信息,在这 ...

  7. CSS块元素、行内元素、行内块元素的转换

    一.块元素转行内元素:display:inline 二.行内元素转块元素:display:block div{ display: inline; /*无效 width: 500px; height: ...

  8. 【JZOJ6222】【20190617】可爱

    题目 给定一个长度为\(n\)的串,定义两个串匹配当且仅当两个串长度相同并且不同字符至多一个 对于每一个长度为\(m\)的子串输出和它匹配的子串个数 $1 \le n \le 10^5  ,  m \ ...

  9. [HAOI2018]染色(NTT)

    前置芝士 可重集排列 NTT 前置定义 \[\begin{aligned}\\ f_i=C_m^i\cdot \frac{n!}{(S!)^i(n-iS)!}\cdot (m-i)^{n-iS}\\ ...

  10. Redis采坑(一)——数据无法插入,内存溢出

    一.采坑背景 在最大数据分析的过程中,redis是被当做热数据的缓存库使用的,在某一天中,redis数据库热数据无法插入,此时数据量大概在100万左右,很是纠结,为什么不能插入?程序的错误,不可能,没 ...