chamfer_pcd
import tensorflow as tf
import numpy as np def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2 def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = np.linalg.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist if __name__=='__main__':
batch_size = 3
num_point = 10
num_features = 3
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print (array1)
#print(array2)
print('numpy: ', chamfer_distance_numpy(array1, array2))
chamfer_pcd的更多相关文章
随机推荐
- websocket简单样例
服务端 var server = require('ws').Server; }); serv.on('connection',function(socket){ socket.send('hello ...
- Tensorflow细节-P290-命名空间与tensorboard上的节点
讲解几个重点知识 1.对于tf.get_variable()中的reuse,意思是,如果有名字一模一样的变量,则对这个变量继续使用,如果没有名字一模一样的变量,则创建这个变量 2.options=ru ...
- java 库存管理
第一种方法: import java.util.Scanner; import java.util.Random; class kuCun { //库存管理 public static void m ...
- python(三)——while语句
while死循环 #!/usr/bin/env python #-*- coding:utf8 -*- import time while 1 == 1: print('Ok',time.time() ...
- 2017.10.2 国庆清北 D2T1 (a*b)|x
在电脑上后面仨点过不了,要用I64d,lld会炸.但是洛谷上要用lld,LINUX系统没有I64d /* 求一个数对满足 (a*b)|n,也就是求三个数 a*b*c=n,那么求1~n之间的,就是a*b ...
- pip崩了, 解决 ModuleNotFoundError: No module named 'pip'.
今天 在windows下用pip 安装数据库模块pymysql 把pip 弄崩了,直接出现下面的错误.都是红字, 再输入pip install pymysql ,会报错ModuleNotFound ...
- django.db.migrations.exceptions.InconsistentMigrationHistory: Migration admin.0001_initial is applie
Traceback (most recent call last): File "manage.py", line 15, in <module> execute_fr ...
- 微信小程序之网络通信
关于网络通信,这里我使用的是wx.request,官方代码示例如下: wx.request({ url: 'test.php', //仅为示例,并非真实的接口地址 data: { x: '', y: ...
- UML的使用
软件工程项目这周要交一个设计文档,其中涉及UML图的画法,根据上课给的ppt做一个记录. 有关于UML的介绍在这里不再赘述,直接开整! UML的基本模型 当然必要的介绍必不可少,这里先介绍UML的基本 ...
- IOC注解方式1.0
在spring4之后,想要使用注解形式,必须得要引入aop的包 在配置文件当中,还得要引入一个context约束 <?xml version="1.0" encoding=& ...