import tensorflow as tf
import numpy as np def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2 def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = np.linalg.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist if __name__=='__main__':
batch_size = 3
num_point = 10
num_features = 3
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print (array1)
#print(array2)
print('numpy: ', chamfer_distance_numpy(array1, array2))

  

chamfer_pcd的更多相关文章

随机推荐

  1. modbus系列文章—汇总

    请移步我博客园的网站 基本上是自己的原创,不是网上抄来抄去的,有很多干货,希望一边整理,一边修改-有不对的地方多多指教. https://www.cnblogs.com/CodeWorkerLiMin ...

  2. reshape()函数

    """ 1.当原始数组A[4,6]为二维数组,代表4行6列. A.reshape(-1,8):表示将数组转换成8列的数组,具体多少行我们不知道,所以参数设为-1.用我们的 ...

  3. CI持续集成 -- git 与 gitlab

    版本控制系统概述 git Git基本概述 Git是一个免费的开源分布式版本控制系统,旨在快速高效地处理从小型到大型项目的所有内容. Git安装配置 #安装Git yum install -y git ...

  4. rust cargo 一些方便的三方cargo 子命令扩展

    内容来自cargo 的github wiki,记录下,方便使用 可选的列表 cargo-audit - Audit Cargo.lock for crates with security vulner ...

  5. dbt 0.13.0 新添加特性sources 试用

    dbt 0.13 添加了一个新的功能sources 我呢可以用来做以下事情 从基础模型的源表中进行数据选择 测试对于源数据的假设 计算源数据的freshness source 操作 定义source ...

  6. rpm 简单 package 创建demo

    安装的工具 yum install -y rpmdevtools 准备环境 主要是初始化,会自动创建rpm 包构建需要的目录 rpmdev-setuptree 编写简单的spec cd ~/rpmbu ...

  7. HTML5 Geolocation(地理定位)

    一.背景 在HTML规范中,增加了获取用户地理信息的API,这样使得可以基于用户位置开发互联网应用,即基于位置服务 鉴于该特性可能侵犯用户的隐私,除非用户同意,否则用户位置信息是不可用的. Inter ...

  8. NOI 2019 游记

    day -1 去报了个到,顺便买了一大堆衣服. 感觉学校饭堂不太行. day 0 上午是开幕式,. 下午是笔试,顺利获得 \(100\) 分. day 1 先看题. 第一题看到 \(At^2+Bt+C ...

  9. 【AtCoder】 ARC 102

    link C-Triangular Relationship 发现要么全部是\(K\)的倍数,要么全部是模\(K\)余\(K/2,(K=2n)\) #include<bits/stdc++.h& ...

  10. EXCEL复制可见单元格

    Excel筛选后,复制筛选后的单元格 1, 首先还是复制这一部分内容. 2, CTRL+G打开 "定位"窗口. 3, 在 "定位"窗口中选择"定位条件 ...