chamfer_pcd
import tensorflow as tf
import numpy as np def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2 def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = np.linalg.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist if __name__=='__main__':
batch_size = 3
num_point = 10
num_features = 3
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print (array1)
#print(array2)
print('numpy: ', chamfer_distance_numpy(array1, array2))
chamfer_pcd的更多相关文章
随机推荐
- modbus系列文章—汇总
			请移步我博客园的网站 基本上是自己的原创,不是网上抄来抄去的,有很多干货,希望一边整理,一边修改-有不对的地方多多指教. https://www.cnblogs.com/CodeWorkerLiMin ... 
- reshape()函数
			""" 1.当原始数组A[4,6]为二维数组,代表4行6列. A.reshape(-1,8):表示将数组转换成8列的数组,具体多少行我们不知道,所以参数设为-1.用我们的 ... 
- CI持续集成 -- git 与 gitlab
			版本控制系统概述 git Git基本概述 Git是一个免费的开源分布式版本控制系统,旨在快速高效地处理从小型到大型项目的所有内容. Git安装配置 #安装Git yum install -y git ... 
- rust cargo 一些方便的三方cargo 子命令扩展
			内容来自cargo 的github wiki,记录下,方便使用 可选的列表 cargo-audit - Audit Cargo.lock for crates with security vulner ... 
- dbt 0.13.0 新添加特性sources 试用
			dbt 0.13 添加了一个新的功能sources 我呢可以用来做以下事情 从基础模型的源表中进行数据选择 测试对于源数据的假设 计算源数据的freshness source 操作 定义source ... 
- rpm 简单 package 创建demo
			安装的工具 yum install -y rpmdevtools 准备环境 主要是初始化,会自动创建rpm 包构建需要的目录 rpmdev-setuptree 编写简单的spec cd ~/rpmbu ... 
- HTML5 Geolocation(地理定位)
			一.背景 在HTML规范中,增加了获取用户地理信息的API,这样使得可以基于用户位置开发互联网应用,即基于位置服务 鉴于该特性可能侵犯用户的隐私,除非用户同意,否则用户位置信息是不可用的. Inter ... 
- NOI 2019 游记
			day -1 去报了个到,顺便买了一大堆衣服. 感觉学校饭堂不太行. day 0 上午是开幕式,. 下午是笔试,顺利获得 \(100\) 分. day 1 先看题. 第一题看到 \(At^2+Bt+C ... 
- 【AtCoder】 ARC 102
			link C-Triangular Relationship 发现要么全部是\(K\)的倍数,要么全部是模\(K\)余\(K/2,(K=2n)\) #include<bits/stdc++.h& ... 
- EXCEL复制可见单元格
			Excel筛选后,复制筛选后的单元格 1, 首先还是复制这一部分内容. 2, CTRL+G打开 "定位"窗口. 3, 在 "定位"窗口中选择"定位条件 ... 
