import tensorflow as tf
import numpy as np def distance_matrix(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
, it's size: (num_point, num_point)
"""
num_point, num_features = array1.shape
expanded_array1 = tf.tile(array1, (num_point, 1))
expanded_array2 = tf.reshape(
tf.tile(tf.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = tf.norm(expanded_array1-expanded_array2, axis=1)
distances = tf.reshape(distances, (num_point, num_point))
return distances def av_dist(array1, array2):
"""
arguments:
array1, array2: both size: (num_points, num_feature)
returns:
distances: size: (1,)
"""
distances = distance_matrix(array1, array2)
distances = tf.reduce_min(distances, axis=1)
distances = tf.reduce_mean(distances)
return distances def av_dist_sum(arrays):
"""
arguments:
arrays: array1, array2
returns:
sum of av_dist(array1, array2) and av_dist(array2, array1)
"""
array1, array2 = arrays
av_dist1 = av_dist(array1, array2)
av_dist2 = av_dist(array2, array1)
return av_dist1+av_dist2 def chamfer_distance_tf(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = tf.reduce_mean(
tf.map_fn(av_dist_sum, elems=(array1, array2), dtype=tf.float64)
)
return dist def array2samples_distance(array1, array2):
"""
arguments:
array1: the array, size: (num_point, num_feature)
array2: the samples, size: (num_point, num_feature)
returns:
distances: each entry is the distance from a sample to array1
"""
num_point, num_features = array1.shape
expanded_array1 = np.tile(array1, (num_point, 1))
expanded_array2 = np.reshape(
np.tile(np.expand_dims(array2, 1),
(1, num_point, 1)),
(-1, num_features))
distances = np.linalg.norm(expanded_array1-expanded_array2, axis=1)
distances = np.reshape(distances, (num_point, num_point))
distances = np.min(distances, axis=1)
distances = np.mean(distances)
return distances def chamfer_distance_numpy(array1, array2):
batch_size, num_point, num_features = array1.shape
dist = 0
for i in range(batch_size):
av_dist1 = array2samples_distance(array1[i], array2[i])
av_dist2 = array2samples_distance(array2[i], array1[i])
dist = dist + (av_dist1+av_dist2)/batch_size
return dist if __name__=='__main__':
batch_size = 3
num_point = 10
num_features = 3
np.random.seed(1)
array1 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
array2 = np.random.randint(0, high=4, size=(batch_size, num_point, num_features))
print (array1)
#print(array2)
print('numpy: ', chamfer_distance_numpy(array1, array2))

  

chamfer_pcd的更多相关文章

随机推荐

  1. python中的assert

    assert 2>3, ("错误")print("haha") 如果断言处的表达式是错误的话,会打印assert后面的提示,并且下面的语句就不会执行了. ...

  2. [51Nod 1220] - 约数之和 (杜教筛)

    题面 令d(n)d(n)d(n)表示nnn的约数之和求 ∑i=1n∑j=1nd(ij)\large\sum_{i=1}^n\sum_{j=1}^nd(ij)i=1∑n​j=1∑n​d(ij) 题目分析 ...

  3. JPA EnableJpaAuditing 审计功能

    关于自动填充或更新实体中的 CreateDate.CreatedBy 等在之前有一篇 jeecg 默认为空的字段值是如何被填充的? 有提到通过拦截器的方式实现,但是今天带大家了解一下如果使用 JPA ...

  4. oracle 游标使用详解

    -- 声明游标:CURSOR cursor_name IS select_statement--For 循环游标--(1)定义游标--(2)定义游标变量--(3)使用for循环来使用这个游标decla ...

  5. .pdb 文件的内部结构

    粗略察看一 下.pdb 文件,会发现在其起始位置存放的是这样一个字符串“Microsoft C/C++ program database 2.00”.可以看出 PDB 是 Program Databa ...

  6. telegraf 学习二 几个概念

    telegraf 自身包好了自己处理metrics 的数据模型,以及出炉方法 metrics Telegraf指标是用于在处理期间对数据建模的内部表示.这些指标完全基于InfluxDB的数据模型,包含 ...

  7. Mac下删除自己安装的Python

    删除Python框架sudo rm -rf /Library/Frameworks/Python.framework/Versions/x.x 删除Python程序sudo rm -rf “/Appl ...

  8. c博客作业-我的第一篇博客

    1.你对网络专业或者计算机专业了解是怎样的? 以前接触计算机,只是把它当作娱乐的工具,并没有太过了解,现在我通过查阅了解了一些计算机的知识. 计算机专业的学生要学习的不仅是会使用,而且要学习计算机的基 ...

  9. tensorflow学习(一)

    今天开始学习tensorflow框架,从极客学院下载了官方中文教程(15年翻译的),第一天开始学习第一章ng基本流程和原理,作为前奏.然后写了代码,验证一下,准确率确实非常高,非常好用.把代码上传,作 ...

  10. windbg预览版,windbg preview配置win7x64双机调试

    目录 一丶简介 二丶步骤 1.下载Windbg Preview (windbg预览版本) 2.配置虚拟机端口 3.虚拟机设置调试湍口 4.windbg preview开始调试. 一丶简介 Windbg ...