You are a product manager and currently leading a team to develop a new product. Unfortunately, the latest version of your product fails the quality check. Since each version is developed based on the previous version, all the versions after a bad version are also bad.

Suppose you have n versions [1, 2, ..., n] and you want to find out the first bad one, which causes all the following ones to be bad.

You are given an API bool isBadVersion(version) which will return whether version is bad. Implement a function to find the first bad version. You should minimize the number of calls to the API.

Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.

你是一个产品经理,目前正在带领一个组开发一个新产品。不幸的是,最近的产品版本质量检查失败了。因为每一个版本都是基于前一个版本开发的,所以一个坏版本后面的所有版本也都是坏的。假设有 n 个版本,你想找到第一个坏的版本。给了一个 API 可以检查版本是否是坏的,实施一个函数找到第一个坏的版本,要最小化调用 API 的次数。

解法1:暴力搜索Brute Force。 [Time Limit Exceeded]

解法2:二分法Binary Search。好版本和坏版本一定有个边界,用二分法来找这个边界,对mid值调用API函数,如果是坏版本,说明边界在左边,则把mid赋值给right,如果是好版本,则说明边界在右边,则把mid+1赋给left,最后返回left。

Java: Time: O(n), Space: O(1), [Time Limit Exceeded]

public int firstBadVersion(int n) {
for (int i = 1; i < n; i++) {
if (isBadVersion(i)) {
return i;
}
}
return n;
}

Java: Time: O(logn), Space: O(1)

public int firstBadVersion(int n) {
int left = 1;
int right = n;
while (left < right) {
int mid = left + (right - left) / 2;
if (isBadVersion(mid)) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}  

Python: wo

class Solution(object):
def firstBadVersion(self, n):
"""
:type n: int
:rtype: int
"""
left, right = 1, n
while left < right:
mid = left + (right - left) / 2
if isBadVersion(mid):
right = mid
else:
left = mid + 1 return left   

Python:

class Solution(object):
def firstBadVersion(self, n):
"""
:type n: int
:rtype: int
"""
left, right = 1, n
while left <= right:
mid = left + (right - left) / 2
if isBadVersion(mid):
right = mid - 1
else:
left = mid + 1
return left

C++: from 1 to n

// Forward declaration of isBadVersion API.
bool isBadVersion(int version); class Solution {
public:
int firstBadVersion(int n) {
int left = 1, right = n;
while (left < right) {
int mid = left + (right - left) / 2;
if (isBadVersion(mid)) right = mid;
else left = mid + 1;
}
return left;
}
};

C++: from 0 to n - 1

// Forward declaration of isBadVersion API.
bool isBadVersion(int version); class Solution {
public:
int firstBadVersion(int n) {
int left = 0, right = n - 1;
while (left < right) {
int mid = left + (right - left) / 2;
if (isBadVersion(mid + 1)) right = mid;
else left = mid + 1;
}
return right + 1;
}
};

类似题目:

[LeetCode] 35. Search Insert Position 搜索插入位置

[LeetCode] 165. Compare Version Numbers 比较版本数

[LeetCode] 374. Guess Number Higher or Lower 猜数字大小

All LeetCode Questions List 题目汇总

[LeetCode] 278. First Bad Version 第一个坏版本的更多相关文章

  1. [leetcode]278. First Bad Version首个坏版本

    You are a product manager and currently leading a team to develop a new product. Unfortunately, the ...

  2. [LeetCode] First Bad Version 第一个坏版本

    You are a product manager and currently leading a team to develop a new product. Unfortunately, the ...

  3. 278 First Bad Version 第一个错误的版本

    你是产品经理,目前正在领导一个团队开发一个新产品.不幸的是,您的产品的最新版本没有通过质量检查.由于每个版本都是基于之前的版本开发的,所以错误版本之后的所有版本都是不好的.假设你有 n 个版本 [1, ...

  4. leetcode 278. First Bad Version

    You are a product manager and currently leading a team to develop a new product. Unfortunately, the ...

  5. Leetcode 278 First Bad Version 二分查找(二分下标)

    题意:找到第一个出问题的版本 二分查找,注意 mid = l + (r - l + 1) / 2;因为整数会溢出 // Forward declaration of isBadVersion API. ...

  6. (medium)LeetCode 278.First Bad Version

    You are a product manager and currently leading a team to develop a new product. Unfortunately, the ...

  7. Java [Leetcode 278]First Bad Version

    题目描述: You are a product manager and currently leading a team to develop a new product. Unfortunately ...

  8. LeetCode 278.First Bad Version(E)(P)

    题目: You are a product manager and currently leading a team to develop a new product. Unfortunately, ...

  9. LeetCode OJ:Compare Version Numbers(比较版本字符串)

    Compare two version numbers version1 and version2.If version1 > version2 return 1, if version1 &l ...

随机推荐

  1. Luogu P2280/ACAG 0x03-1 激光炸弹

    Luogu P2280/ACAG 0x03-1 激光炸弹 这道题要用到二维前缀和. 首先读入时,令$a[x][y]=val$: 然后不难递推出$s[i][j]=s[x-1][y]+s[i][j-1]- ...

  2. NOIP2017 PJ 跳房子 —— 单调队列优化DP

    题目描述 跳房子,也叫跳飞机,是一种世界性的儿童游戏,也是中国民间传统的体育游戏之一.跳房子的游戏规则如下: 在地面上确定一个起点,然后在起点右侧画n个格子,这些格子都在同一条直线上.每个格子内有一个 ...

  3. 如果在使用谷歌的gson的时候,在返回时间类型的数据的时候,

    可能会出现在long类型的时间后面多3个0 如下图所示 可以自己创建一个json序列化的类 public class Date2LongSerializer extends JsonSerialize ...

  4. postgres —— 窗口函数入门

    注:测试数据在 postgres —— 分组集与部分聚集 中 聚集将多行转变成较少.聚集的行.而窗口则不同,它把当前行与分组中的所有行对比,并且返回的行数没有变化. 组合当前行与 production ...

  5. 关于Java的i++和++i的区别

    之前对于 i++ 和 ++i 的理解就是: int i=1,a=0; 1.i++ 先运算在赋值,例如 a=i++,先运算a=i,后运算i=i+1,所以结果是a==1 2.++i 先赋值在运算,例如 a ...

  6. web自动化测试-获得验证信息

    一.概述 1.在编写功能测试用例时,会假定一个预期结果,在执行用例过程中把得到的实际结果与预期结果进行比较,从而判断用例的通过与失败 2.自动化测试用例是由机器去执行,通常机器并不像人一样有思维和判断 ...

  7. AndroidStudio中Flutter打包APK

    1.生成签名文件 在打包之前我们需要一个签名文件,证明文件的唯一性. keytool -genkey -v -keystore F:\APP\sign.jks -keyalg RSA -keysize ...

  8. BZOJ 4771: 七彩树 可持久化线段树+树链的并

    这个思路挺有意思的 ~ 利用树链的并来保证每个颜色只贡献一次,然后用可持久化线段树维护 code: #include <set> #include <cstdio> #incl ...

  9. WinDbg的工作空间---Work Space

    一.什么是工作空间 Windbg把和调试相关的所有配置称为workspace.WinDbg使用工作空间来描述和存储调试项目的属性.参数及调试器设置等信息.工作空间与vc中的项目文件很相似.退出wind ...

  10. Mongo 安装及基本操作

    一. 安装 Mongo文档: https://docs.mongodb.com/v3.6/administration/install-enterprise-linux/ Linux mongo的配置 ...