UOJ

思路

由于没有代码和AC记录的支撑,以下思路可能有错。

看到全部取完,大概可以想到min-max容斥。

由于期望的表达式里面合法方案的个数是在分母里面的,所以可以想到把它记录在状态里。

然而由于我菜,一开始只想到逐列DP,于是复杂度炸了……

考虑插头DP:设\(f_{i,j,S,k}\)表示当前做到\((i,j)\),轮廓线上的状态是\(S\),已经有\(k\)个取到礼物的方案,带容斥系数的方案数。

转移想必乱搞就行了?

代码

咕咕咕

UOJ422. 【集训队作业2018】小Z的礼物 [min-max容斥,插头DP]的更多相关文章

  1. [UOJ422][集训队作业2018]小Z的礼物——轮廓线DP+min-max容斥

    题目链接: [集训队作业2018]小Z的礼物 题目要求的就是最后一个喜欢的物品的期望得到时间. 根据$min-max$容斥可以知道$E(max(S))=\sum\limits_{T\subseteq ...

  2. uoj#422. 【集训队作业2018】小Z的礼物(MIn-Max容斥+插头dp)

    题面 传送门 题解 好迷-- 很明显它让我们求的是\(Max(S)\),我们用\(Min-Max\)容斥,因为\(Min(S)\)是很好求的,只要用方案数除以总方案数算出概率,再求出倒数就是期望了 然 ...

  3. UOJ 422 [集训队作业2018] 小Z的礼物 min-max容斥 期望 轮廓线dp

    LINK:小Z的礼物 太精髓了 我重学了一遍min-max容斥 重写了一遍按位或才写这道题的. 还是期望多少时间可以全部集齐. 相当于求出 \(E(max(S))\)表示最后一个出现的期望时间. 根据 ...

  4. UOJ 422 - 【集训队作业2018】小Z的礼物(Min-Max 容斥+轮廓线 dp)

    题面传送门 本来说要找道轮廓线 \(dp\) 的题目刷刷来着的?然后就找到了这道题. 然鹅这个题给我最大的启发反而不在轮廓线 \(dp\),而在于让我新学会了一个玩意儿叫做 Min-Max 容斥. M ...

  5. 【UOJ#422】【集训队作业2018】小Z的礼物(min-max容斥,轮廓线dp)

    [UOJ#422][集训队作业2018]小Z的礼物(min-max容斥,轮廓线dp) 题面 UOJ 题解 毒瘤xzy,怎么能搬这种题当做WC模拟题QwQ 一开始开错题了,根本就不会做. 后来发现是每次 ...

  6. UOJ 449 【集训队作业2018】喂鸽子 【生成函数,min-max容斥】

    这是第100篇博客,所以肯定是要水过去的. 首先看到这种形式的东西首先min-max容斥一波,设\(f_{c,s}\)表示在\(c\)只咕咕中,经过\(s\)秒之后并没有喂饱任何一只的概率. \[ \ ...

  7. [集训队作业2018]蜀道难——TopTree+贪心+树链剖分+链分治+树形DP

    题目链接: [集训队作业2018]蜀道难 题目大意:给出一棵$n$个节点的树,要求给每个点赋一个$1\sim n$之内的权值使所有点的权值是$1\sim n$的一个排列,定义一条边的权值为两端点权值差 ...

  8. 2019.2.25 模拟赛T1【集训队作业2018】小Z的礼物

    T1: [集训队作业2018]小Z的礼物 我们发现我们要求的是覆盖所有集合里的元素的期望时间. 设\(t_{i,j}\)表示第一次覆盖第i行第j列的格子的时间,我们要求的是\(max\{ALL\}\) ...

  9. UOJ#422. 【集训队作业2018】小Z的礼物

    #422. [集训队作业2018]小Z的礼物 min-max容斥 转化为每个集合最早被染色的期望时间 如果有x个选择可以染色,那么期望时间就是((n-1)*m+(m-1)*n))/x 但是x会变,中途 ...

  10. UOJ #449. 【集训队作业2018】喂鸽子

    UOJ #449. [集训队作业2018]喂鸽子 小Z是养鸽子的人.一天,小Z给鸽子们喂玉米吃.一共有n只鸽子,小Z每秒会等概率选择一只鸽子并给他一粒玉米.一只鸽子饱了当且仅当它吃了的玉米粒数量\(≥ ...

随机推荐

  1. Shell变量一览

    Shell变量一览 $# Shell命令的参数个数 $$ Shell本身的进程ID $! Shell最后运行的后台进程的进程ID $? Shell最后运行的命令的退出码(返回值) $- Shell使用 ...

  2. 【OO学习】OO第三单元作业总结

    [OO学习]OO第三单元作业总结 第三单元,我们学习了JML语言,用来进行形式化设计.本单元包括三次作业,通过给定的JML来实行了一个对路径的管理系统,最后完成了一个地铁系统,来管理不同的线路,求得关 ...

  3. SASS系列之:!global VS !deafult

    先脑补两组场景. 场景一: 同事们每天中午都会外出吃饭.通常情况下都会先问,去哪儿吃啊?不知道啊?下楼再说吧.到了楼下好不容易有个人站出来说,既然没人说我可就说了啊,咱们去吃香草香草吧.没人反对就去, ...

  4. Xcodeproj相关以及删除 多层文件夹、库、资源逻辑

    一.介绍Xcodeproj是CocoaPods用ruby开发的一个插件库,可以用来新建.修改Xcode工程. 二.wiki和资源Xcodeproj wiki   :https://www.rubydo ...

  5. HTML基本代码

    HTML 今天回顾html,总结一下今日所学内容. -------------------正文-------------------------- 目的:通过一些基础的标签制作关于LOL的静态网页 所 ...

  6. Microsoft Edge设置socks代理

    自已摸的,非官方: 直接修改注册表: REGEDIT4 [HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Internet Se ...

  7. k8s 如何支持私有镜像

    k8s如何支持私有镜像 实现无密钥编排 kubectl create secret docker-registry regsecret --docker-server=registry.cn-shen ...

  8. css背景雪碧图等

    1.背景图 雪碧图技术 要设置背景,是要设置在某个盒子上 <!doctype html> <html lang="en"> <head> < ...

  9. react native jpush

    原文链接:https://blog.csdn.net/qq_38719039/article/details/80684144 1 npm install jpush-react-native --s ...

  10. python中的exec和eval

    exec 描述 exec 执行储存在字符串或文件中的 Python 语句,相比于 eval,exec可以执行更复杂的 Python 代码. 返回值 exec 返回值永远为 None. 需要说明的是在 ...