problem

\(\mathtt {loj-3119}\)

题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一维相同的其他格子上的数都要大的话,我们就称它是极大的。将 \(n\times m\times l\) 的排列随机填入这些格子,求恰有 \(k\) 个极大的数的概率。\(T\) 组数据。

\(T\le 10,\ 1\le n,m,l\le 5\times 10^6,\ 1\le k \le 100\),时限 \(5s\)

Solution

为啥CTS比APIO难这多?我果然还是不会数数呐

根据这一个月来的数数经验……发现:

  • 求答案为 \(k\) (权值)的题:应该是转换成 “答案小于等于 \(k\)” 减去 “答案小于等于 \(k-1\)”。
  • 求恰好 \(k\) 个(数量)的题:应该是转换成 “至少有 \(k\) 个”,再利用二项式反演得到答案。

所以这里设 \(f[i]\) 表示至少有 \(i\) 个极大值的概率,答案即为:

\[\sum_{i=k}^{\min\{n,m,l\}}(-1)^{i-k}\binom ik f[i]
\]

问题转换成求 \(f[i]\)。

首先选出这 \(i\) 个确定的极大值的坐标,系数为:\(P_n^iP_m^iP_l^i\)(考虑顺序,后边要用到)

定义一个坐标 \((x_0,y_0,z_0)\) 的控制范围为 三个平面 \(x=x_0,y=y_0,z=z_0\) 的并(所以极大值的定义即为:该点权值 为 其控制范围上点的权值最大值)

问题转化为求这 \(i\) 个坐标的控制范围的并内,有多少种安排数字顺序(不是权值而是大小关系,因为目前已经选出了这些坐标,并且现在要求的是概率,而非方案数)的方法,使得对于每个选定的坐标,其都为自己控制范围内的最大值。

直接考虑这个问题不好考虑,需要找到突破口,而这里的突破口就是 “这些控制范围的并内,最大值一定是一个极大值”。由于我们在选出这 \(i\) 个坐标的时候,已经考虑了顺序问题,所以若 这\(i\)个极大值控制范围的并 大小为 \(S_i\),则这件事情发生的概率为 \(\frac 1{S_i}\),并且发生这件事情后,所有被这个极大值控制的点都没用了,则将问题转化为选出 \(i-1\) 个坐标的情况,如此递归,计算得到的权值为 \(\prod_{j=1}^i\frac 1{S_j}\)

至于如何计算 \(S_i\),可以发现取全局减多余可得 \(S_i=nml-(n-i)(m-i)(l-i)\),或是直接考虑容斥 \(S_i=(nm+nl+ml)i-(n+m+l)i^2+i^3\)

汇总一下,得到:

\[f[i]=P_n^iP_m^iP_l^i\prod_{j=1}^i\frac 1{S_j}\\
=P_n^iP_m^iP_l^i\prod_{j=1}^i\frac 1{nml-(n-i)(m-i)(l-i)}\\
Ans=\sum_{i=k}^{\min\{n,m,l\}}(-1)^{i-k}\binom ikf[i]\\
=\sum_{i=k}^{\min\{n,m,l\}}(-1)^{i-k}\binom ikP_n^iP_m^iP_l^i\prod_{j=1}^i\frac 1{nml-(n-i)(m-i)(l-i)}
\]

这个式子是线性的,但由于后头那个 \(\prod\) 需要求逆元,所以复杂度为 \(O(\min\{n,m,l\}\log p)\),如此能过 \(80\)。

考虑到这个东西实际上是要求每一个前缀积的逆元,和求阶乘逆元类似,可以先求出整个前缀积的逆元,再从后面往前乘,复杂度 \(O(\min\{n,m,l\}+\log p)\)

设:

\[a_i=nml-(n-i)(m-i)(l-i)\\
b_i=\prod_{j=1}^ia_j\\
c_i=\frac 1{b_i}
\]

可以 \(O(1)\) 得到 \(a_i\),\(O(n)\) 得到 \(b_i\),\(O(\log p)\) 得到 \(c_n=\frac 1{b_n}\),\(O(n)\) 得到 \(c_i=c_{i+1}\cdot a_{i+1}\)

Code

//loj-3119
#include <cstdio>
typedef long long ll; const int N = 5001010, p = 998244353;
int fac[N], ifac[N];
int coe[N], h[N], ih[N];
int n, m, l, k; inline int qpow(int A, int B) {
int res = 1; while(B) {
if(B&1) res = (ll)res * A%p;
A = (ll)A * A%p, B >>= 1;
} return res;
} int main() {
fac[0] = 1;
for(int i=1;i<N;++i) fac[i] = (ll)fac[i-1] * i%p;
ifac[N-1] = qpow(fac[N-1], p-2);
for(int i=N-1;i;--i) ifac[i-1] = (ll)ifac[i] * i%p; int T; scanf("%d",&T);
while(T--) {
scanf("%d%d%d%d", &n, &m, &l, &k);
if(n > m) n ^= m, m ^= n, n ^= m;
if(n > l) n ^= l, l ^= n, n ^= l; const int s2 = ((ll)n*m + (ll)m*l + (ll)n*l)%p, s1 = n+m+l;
for(int i=h[0]=1;i<=n;++i) {
coe[i] = (s2 - (ll)s1 * i + (ll)i*i + (ll)p*p)%p * i%p;
h[i] = (ll)h[i-1] * coe[i]%p;
}
ih[n] = qpow(h[n], p-2);
for(int i=n;i;--i) ih[i-1] = (ll)ih[i] * coe[i]%p; const int nml_k = (ll)fac[n] * fac[m]%p * fac[l]%p * ifac[k]%p; int Ans = 0;
for(int i=k;i<=n;++i) {
int vl = (ll)nml_k * fac[i]%p * ifac[i-k]%p * ifac[n-i]%p * ifac[m-i]%p * ifac[l-i]%p;
vl = (ll)vl * ih[i]%p;
if(i-k&1) vl = p - vl;
(Ans += vl) >= p && (Ans -= p);
}
printf("%d\n", Ans);
}
return 0;
}

题解-CTS2019随机立方体的更多相关文章

  1. 【题解】Luogu P5400 [CTS2019]随机立方体

    原题传送门 毒瘤计数题 我们设\(dp_i\)表示至少有\(i\)个极大数字的概率,\(ans_i\)表示恰好有\(i\)个极大数的概率,\(mi=Min(n,m,l)\) 易知: \[dp_i=\s ...

  2. LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演

    传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...

  3. [LOJ#3119][Luogu5400][CTS2019]随机立方体(容斥+DP)

    https://www.cnblogs.com/cjyyb/p/10900993.html #include<cstdio> #include<algorithm> #defi ...

  4. Luogu5400 CTS2019随机立方体(容斥原理)

    考虑容斥,计算至少有k个极大数的概率.不妨设这k个数对应的格子依次为(k,k,k)……(1,1,1).那么某一维坐标<=k的格子会对这些格子是否会成为极大数产生影响.先将这样的所有格子和一个数集 ...

  5. [CTS2019]随机立方体(容斥+组合数学)

    这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不 ...

  6. 洛谷 P5400 - [CTS2019]随机立方体(组合数学+二项式反演)

    洛谷题面传送门 二项式反演好题. 首先看到"恰好 \(k\) 个极大值点",我们可以套路地想到二项式反演,具体来说我们记 \(f_i\) 为钦定 \(i\) 个点为极大值点的方案数 ...

  7. 【CTS2019】随机立方体(容斥)

    [CTS2019]随机立方体(容斥) 题面 LOJ 洛谷 题解 做这道题目的时候不难想到容斥的方面. 那么我们考虑怎么计算至少有\(k\)个极大值的方案数. 我们首先可以把\(k\)个极大值的位置给确 ...

  8. 「CTS2019 | CTSC2019」随机立方体 解题报告

    「CTS2019 | CTSC2019」随机立方体 据说这是签到题,但是我计数学的实在有点差,这里认真说一说. 我们先考虑一些事实 如果我们在位置\((x_0,y_0,z_0)\)钦定了一个极大数\( ...

  9. 【loj3119】【CTS2019】随机立方体

    题目 ​ 一个 $ n m l $ 的立方体等概率填入 $ 1-nml $ ; ​ 定义一个位置是极大的当且仅当这个位置比三位坐标的至少一维与之相等的位置的值都大. ​ 询问极大值恰好有\(k\)个的 ...

随机推荐

  1. Docs-.NET-C#-指南-语言参考-关键字-值类型:enum

    ylbtech-Docs-.NET-C#-指南-语言参考-关键字-值类型:enum 1.返回顶部 1. enum(C# 参考) 2015/07/20 enum 关键字用于声明枚举,一种包含一组被称为枚 ...

  2. Flutter生命周期

    生命周期是一个组件加载到卸载的整个周期,熟悉生命周期可以让我们在合适的时机做该做的事情, flutter中的State生命周期和android以及React Native的生命周期类似. 大致可以分为 ...

  3. 【转】Python读取PDF文档,输出内容

    Python3读取pdf文档,输出内容(txt) from urllib.request import urlopen from pdfminer.pdfinterp import PDFResour ...

  4. Delphi 操作SQL 插入一万条数据 三种方式速度测试

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...

  5. ES6深入浅出-11 ES6新增的API(上)-2.Array新增API

    Array.form 把不是数组的东西变成数组.最常见的就是把伪数组变成数组 那么什么是伪数组 这就是伪数组,因为它不是继承自Array的原型的对象.它只是一个看起来很像数组的数组 只看下面的代码.a ...

  6. Linux系统的关机、重启、睡眠

    一.关机.重启前的准备1.查看网络联机状态.后台可执行程序 查看一下两样东西,可以让你稍微了解主机目前的使用状态 查看网络联机状态:netstat  -a查看后台执行的程序:ps  -aux2.数据同 ...

  7. VMware Workstation 将虚拟机挂起后,电脑会很卡,SCSI转换成IDE就可以了

    摘自:http://www.360doc.com/content/15/0405/09/10098873_460727712.shtml 用过 VMware Workstation 的人,不知道有没有 ...

  8. v关于使用Glide加载图片失败时显示自己特定的图片

    Glide是Android加载图片的一个框架. 常用加载图片到imageView:Glide.with(this).load(url).into(ImageView imageview). 当加载失败 ...

  9. DEBUG技巧里的问题1 双击某个变量不能显示

    DEBUG模式  双击 ls_return-type 变量不能显示,提示警告消息 好像说明的不是这个问题, 把字段复制到右边的变量框里可以显示 这个确实有点奇怪了

  10. tensor&ndarray&int、float

    (1)如果tensor只有一个元素,然后转换成int或者float类型的时候直接用int()或者float()就可以了: (2)如果tensor含有多个元素,转换成ndarray时就要用x.detac ...