bzoj3996
把这个式子弄清楚就知道这是最小割了
相当于,选某个点i有收入ai,i,会损失ci,
如果i,j都被选则有额外收入ai,j+aj,i
明显,对每个点i,连(s,i,∑ai,j) (i,t,ci)
对每对i,j连边(i,j,ai,j),没了
const inf=;
type node=record
po,next,flow:longint;
end; var e:array[..] of node;
p,numh,h,cur,pre,d:array[..] of longint;
t,len,ans,i,j,n,m,x,s:longint; procedure add(x,y,f:longint);
begin
inc(len);
e[len].po:=y;
e[len].flow:=f;
e[len].next:=p[x];
p[x]:=len;
end; procedure build(x,y,f:longint);
begin
add(x,y,f);
add(y,x,);
end; function min(a,b:longint):longint;
begin
if a>b then exit(b) else exit(a);
end; function sap:longint;
var u,i,j,tmp,neck,q:longint;
begin
numh[]:=t+;
for i:= to t do
cur[i]:=p[i];
u:=; sap:=; neck:=inf;
while h[]<t+ do
begin
d[u]:=neck;
i:=cur[u];
while i<>- do
begin
j:=e[i].po;
if (e[i].flow>) and (h[u]=h[j]+) then
begin
neck:=min(neck,e[i].flow);
pre[j]:=u;
cur[u]:=i;
u:=j;
if u=t then
begin
sap:=sap+neck;
while u<> do
begin
u:=pre[u];
j:=cur[u];
dec(e[j].flow,neck);
inc(e[j xor ].flow,neck);
end;
neck:=inf;
end;
break;
end;
i:=e[i].next;
end;
if i=- then
begin
dec(numh[h[u]]);
if numh[h[u]]= then break;
q:=-;
tmp:=t;
i:=p[u];
while i<>- do
begin
j:=e[i].po;
if e[i].flow> then
if tmp>h[j] then
begin
q:=i;
tmp:=h[j];
end;
i:=e[i].next;
end;
h[u]:=tmp+;
inc(numh[h[u]]);
cur[u]:=q;
if u<> then
begin
u:=pre[u];
neck:=d[u];
end;
end;
end;
end; begin
len:=-;
fillchar(p,sizeof(p),);
readln(n);
t:=n+;
for i:= to n do
begin
s:=;
for j:= to n do
begin
read(x);
s:=s+x;
build(i,j,x);
end;
build(,i,s);
ans:=ans+s;
end;
for i:= to n do
begin
read(x);
build(i,t,x);
end;
writeln(ans-sap);
end.
bzoj3996的更多相关文章
- 【BZOJ3996】[TJOI2015]线性代数(最小割)
[BZOJ3996][TJOI2015]线性代数(最小割) 题面 BZOJ 洛谷 题解 首先把式子拆开,发现我们的答案式就是这个: \[\sum_{i=1}^n\sum_{j=1}^n B_{i,j} ...
- 【BZOJ3996】[TJOI2015]线性代数 最大权闭合图
[BZOJ3996][TJOI2015]线性代数 Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的 ...
- 【BZOJ-3996】线性代数 最小割-最大流
3996: [TJOI2015]线性代数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1054 Solved: 684[Submit][Statu ...
- BZOJ3996 [TJOI2015]线性代数
就是求$D = A \times B \times A^T - C \times A^T$ 展开也就是$$D = \sum_{i, j} A_i * A_j * B_{i, j} - \sum_{i} ...
- BZOJ3996[TJOI2015]线性代数——最小割
题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...
- BZOJ3996:[TJOI2015]线性代数(最大权闭合子图)
Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...
- BZOJ3996 TJOI2015线性代数
先把矩阵式子化简 原式=∑i=1n∑j=1nA[i]∗B[i][j]∗A[j]−∑i=1nA[i]∗C[i] 因此我们发现问题转化为选取一个点所获收益是B[i][j],代价是C[i][j] 这是一个最 ...
- BZOJ3996 [TJOI2015]线性代数 【最小割】
题目 给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 D=(AB-C)A^T最大.其中A^T为A的转置.输出D 输入格式 第一行输入一个整数N,接下来N行输入B矩阵,第i行第 ...
- BZOJ3996 线性代数
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3996 转化题目给的条件 $$D = \sum_{i=1}^n \sum_{j=1}^n{A(i ...
随机推荐
- web页面开发笔记(不断更新)
布局: 1.左右分列2端:使用float:left+float:right,如果一边有多列的话,另一列会对齐最下面那列.所以一般把左右各设一列,一列中再细分多行. 2.div不跟随:使用clear:b ...
- CLR via C# 异常管理读书笔记
1. 设计异常类型层次结构应该浅而宽 2. 注意使用finally块清理资源 3. 不要什么都捕捉 4.得体地从异常中恢复 5.发生不可恢复的异常时回滚部分完成的操作-维持状态 6.隐藏实现细节来维系 ...
- delphi中的临界区
var fLock:TRTLCriticalSection; //定义临界区域 // 初始化 InitializeCriticalSection(fLock); //进入临界区 EnterCritic ...
- 008.ComputeReplacement
Delphi function ComputeReplacement: UTF8String; 类型:function 可见性:public 所在单元:System.RegularExpression ...
- FPGA初学心得
有三种方法在模块中产生逻辑:1.使用连续赋值语句“assign”:2.用实例元件 3.用“always”块.所以在always块中赋值不能使用assign,而是直接给变量赋值就行. reg与wire的 ...
- 去掉代码中自动生成的TODO Auto-generated method stub
Window --> Preferences -->Java -->Code Style -->Code Templates--> Code --> Method ...
- UIView局部点击(转)
今天上班遇到一种情况,需要局部响应点击事件,比如在一个UIImageView中设置一个小圆圈图片,要求点击圆圈里面不响应点击,点击小圆圈外面的部分响应点击.可以通过重写hitTest:withEv ...
- linux常见命令的列表
http://www.pixelbeat.org/cmdline_zh_CN.html 命令 描述 • apropos whatis 显示和word相关的命令. 参见线程安全 • man -t man ...
- nginx+ tomcat集群+动静资源分离
不知道为什么这个随便删不掉,写了也值显示一半一半不显示, 我把重新写了一遍: nginx + tomcat集群和动静资源分离
- java、js的编码、解码
如果在地址栏挂载参数,特别是包含中文,往往要进行编码,取值时再解码,以下是java和js中编码.解码的各自方法. java: @Test public void test3() throws Unsu ...