Codeforces Good Bye 2015 D. New Year and Ancient Prophecy 后缀数组 树状数组 dp
D. New Year and Ancient Prophecy
题目连接:
http://www.codeforces.com/contest/611/problem/C
Description
Limak is a little polar bear. In the snow he found a scroll with the ancient prophecy. Limak doesn't know any ancient languages and thus is unable to understand the prophecy. But he knows digits!
One fragment of the prophecy is a sequence of n digits. The first digit isn't zero. Limak thinks that it's a list of some special years. It's hard to see any commas or spaces, so maybe ancient people didn't use them. Now Limak wonders what years are listed there.
Limak assumes three things:
Years are listed in the strictly increasing order;
Every year is a positive integer number;
There are no leading zeros.
Limak is going to consider all possible ways to split a sequence into numbers (years), satisfying the conditions above. He will do it without any help. However, he asked you to tell him the number of ways to do so. Since this number may be very large, you are only asked to calculate it modulo 109 + 7.
Input
The first line of the input contains a single integer n (1 ≤ n ≤ 5000) — the number of digits.
The second line contains a string of digits and has length equal to n. It's guaranteed that the first digit is not '0'.
Output
Print the number of ways to correctly split the given sequence modulo 109 + 7.
Sample Input
6
123434
Sample Output
8
Hint
题意:
给你一个全是数字的字符串(长度5000),问你多少种划分方案,就可以使得这个字符串分割成了一个绝对递增序列。
题解
DP,dp[i][j]表示以i位置结尾,长度为j的字符串的方案数。转移很简单,就dp[i][j]+=dp[i-j]k,如果str[i-j+1][i]>str[i-j-j+1][i-j]的话,dp[i][j]+=dp[i-j][j]。
很显然,dp是n^3的,我们就可以用奇怪的手法去优化一下就好了,我是无脑后缀数组预处理优化的。
代码
#include<bits/stdc++.h>
using namespace std;
long long dp[5005][5005];
char str[5005];
const int mod = 1e9+7;
char s[5005];
struct Bit
{
int lowbit(int x)
{
return x&(-x);
}
long long val[5005];
int sz;
void init(int sz){
this->sz=sz;
for(int i = 0 ; i <= sz ; ++ i) val[i] = 0 ;
}
void updata(int pos ,long long key)
{
while(pos<=sz){
val[pos]+=key;
if(val[pos]>=mod)
val[pos]-=mod;
pos+=lowbit(pos);
}
}
long long query(int pos)
{
long long res=0;
while(pos>0)
{
res+=val[pos];
if(res>=mod)res-=mod;
pos-=lowbit(pos);
}
return res;
}
}bit[5005];
#define maxn 5005
const int inf=0x3f3f3f3f;
int wa[maxn],wb[maxn],wn[maxn],wv[maxn];
int rk[maxn],height[maxn],sa[maxn],r[maxn],Min[maxn][20],ok[maxn][maxn],n;
int cmp(int *r,int a,int b,int l)
{
return (r[a]==r[b])&&(r[a+l]==r[b+l]);
}
void da(int *r,int *sa,int n,int m)
{
int i,j,p,*x=wa,*y=wb,*t;
for(i=0;i<m;i++) wn[i]=0;
for(i=0;i<n;i++) wn[x[i]=r[i]]++;
for(i=1;i<m;i++) wn[i]+=wn[i-1];
for(i=n-1;i>=0;i--) sa[--wn[x[i]]]=i;
for(j=1,p=1;p<n;j*=2,m=p)
{
for(p=0,i=n-j;i<n;i++) y[p++]=i;
for(i=0;i<n;i++) if(sa[i]>=j) y[p++]=sa[i]-j;
for(i=0;i<n;i++) wv[i]=x[y[i]];
for(i=0;i<m;i++) wn[i]=0;
for(i=0;i<n;i++) wn[wv[i]]++;
for(i=1;i<m;i++) wn[i]+=wn[i-1];
for(i=n-1;i>=0;i--) sa[--wn[wv[i]]]=y[i];
for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1;i<n;i++)
x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
}
}
void calheight(int *r,int *sa,int n)
{
int i,j,k=0;
for(i=1;i<=n;i++) rk[sa[i]]=i;
for(i=0;i<n;height[rk[i++]]=k )
for(k?k--:0,j=sa[rk[i]-1];r[i+k]==r[j+k];k++);
}
void makermq()
{
for(int i=1;i<=n;i++) Min[i][0]=height[i];
for(int i=1;(1<<i)<=n;i++)
for(int j=1;j+(1<<i)-1<=n;j++)
{
Min[j][i]=min(Min[j][i-1],Min[j+(1<<i-1)][i-1]);
}
}
int ask(int a,int b)
{
int l=rk[a],r=rk[b];
if(l>r) swap(l,r);
l++;
if(l>r) return n-a;
int tmp=int(log(r-l+1)/log(2));
return min(Min[l][tmp],Min[r-(1<<tmp)+1][tmp]);
}
int check(int r,int l,int r1,int l1)
{
r--,l--,r1--,l1--;
if(r<0||l<0||r1<0||l1<0)return 0;
if(ok[l1][r]==1)return 1;
return 0;
}
long long updata(long long a,long long b)
{
return (a+b)%mod;
}
int main()
{
scanf("%d%s",&n,s+1);
for(int i=0;i<n;i++)
str[i]=s[i+1];
for(int i=0;i<n;i++)
r[i]=str[i];
r[n]=0;
da(r,sa,n+1,256);
calheight(r,sa,n);
makermq();
for(int i = 0 ; i <= n ; ++ i) bit[i].init(n);
for(int i = 0 ; i < n ; ++ i)
for(int j = i + 1 ; j < n ; ++ j)
if((j-i)%2==1){
int tmp=ask(i,i+(j-i+1)/2);
if(i+tmp>=i+(j-i+1)/2||str[i+tmp]>=str[i+(j-i+1)/2+tmp]) ok[i][j]=0;else ok[i][j]=1;
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=i;j++)
{
if(s[i-j+1] == '0')
continue;
dp[i][j] = 0 ;
if(i-j == 0) dp[i][j] ++ ;
dp[i][j] += bit[i-j].query(j - 1);
if(i-j!=0&&(i-j-j+1)>0){
if(ok[i-j-j][i-1])
dp[i][j] += bit[i-j].query(j)-bit[i-j].query(j-1);
}
if(dp[i][j]>=mod)dp[i][j]%=mod;
bit[i].updata(j,dp[i][j]);
}
}
cout<<bit[n].query(n)<<endl;
return 0;
}
Codeforces Good Bye 2015 D. New Year and Ancient Prophecy 后缀数组 树状数组 dp的更多相关文章
- Codeforces Round #365 (Div. 2) D - Mishka and Interesting sum(离线树状数组)
http://codeforces.com/contest/703/problem/D 题意: 给出一行数,有m次查询,每次查询输出区间内出现次数为偶数次的数字的异或和. 思路: 这儿利用一下异或和的 ...
- Good Bye 2015 D. New Year and Ancient Prophecy
D. New Year and Ancient Prophecy time limit per test 2.5 seconds memory limit per test 512 megabytes ...
- Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组
E. George and Cards George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...
- Codeforces Round #261 (Div. 2) D. Pashmak and Parmida's problem (树状数组求逆序数 变形)
题目链接 题意:给出数组A,定义f(l,r,x)为A[]的下标l到r之间,等于x的元素数.i和j符合f(1,i,a[i])>f(j,n,a[j]),求i和j的种类数. 我们可以用map预处理出 ...
- 2015 CCPC-C-The Battle of Chibi (UESTC 1217)(动态规划+树状数组)
赛后当天学长就说了树状数组,结果在一个星期后赖床时才有了一点点思路…… 因为无法提交,不确定是否正确..嗯..有错希望指出,谢谢... 嗯..已经A了..提交地址http://acm.uestc.ed ...
- Codeforces Round #263 (Div. 1) C. Appleman and a Sheet of Paper 树状数组暴力更新
C. Appleman and a Sheet of Paper Appleman has a very big sheet of paper. This sheet has a form of ...
- 2015 北京网络赛 E Border Length hihoCoder 1231 树状数组 (2015-11-05 09:30)
#1231 : Border Length 时间限制:1000ms 单点时限:1000ms 内存限制:256MB 描述 Garlic-Counting Chicken is a special spe ...
- Codeforces Round #381 (Div. 2) D. Alyona and a tree dfs序+树状数组
D. Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input standar ...
- Codeforces Round #590 (Div. 3)【D题:维护26棵树状数组【好题】】
A题 题意:给你 n 个数 , 你需要改变这些数使得这 n 个数的值相等 , 并且要求改变后所有数的和需大于等于原来的所有数字的和 , 然后输出满足题意且改变后最小的数值. AC代码: #includ ...
随机推荐
- <转>安卓应用测试checklist
启动: 1. 启动入口:桌面正常启动,最近运行启动,所有程序列表中启动,锁屏快捷启动 2. 其他入口:从其他程序开启应用,从外部以文件形式打开应用(如果有) 3. 退回:从其他程序退回时回到被测应用, ...
- 使用FTP搭建YUM
VSFTP搭建YUM源 1.安装FTP [root@FTP kel]# rpm -qa |grep vsftp vsftpd-2.2.2-6.el6_0.1.x86_64 首先需要安装的ftp软件为v ...
- Request、Request.Form、Request.QueryString 用法的区别
Request.Form:获取以POST方式提交的数据. Request.QueryString:获取地址栏参数(以GET方式提交的数据). Request:包含以上两种方式(优先获取GET方式提交的 ...
- 开扒php内核函数,第三篇 implode
一开始觉得implode挺容易实现,但是写着写着才发现是挺复杂的,不说啦 来看看implode的用法吧 <?php $arr = array('Hello','World!','Beautifu ...
- Native App、Web App 还是Hybrid App?
一.什么是Native App? Native App即原生应用,即我们一般所称的客户端,是针对不同手机系统单独开发的本地应用,如需使用需要先下载到手机并安装,下载Native App的最常见方法是访 ...
- 使用JavaMail API发送邮件
发送邮件是很常用的功能,注册验证,找回密码,到货通知,欠费提醒等,都可以通过邮件来提醒. Java中发送邮件需要使用javax.mail.jar包,读者可以上网搜索或去官方下载,下载地址为: 下面贴上 ...
- oracle 体系结构解析
三.oracle 体系结构 1.oracle内存由SGA+PGA所构成 2.oracle数据库体系结构数据库的体系结构是指数据库的组成.工作过程与原理,以及数据在数据库中的组织与管理机制. oracl ...
- 上传控件swfupload的使用笔记
1.下载下来的官方domo里不同的例子里会引入各自的JS,注意区分.可以直接拿官方例子来改成自己想要的例子. 2.注意PHP配置文件里也有最大上传文件限制,如果文件太大会上传不成功. 3.如果有问题可 ...
- 《学习OpenCV》练习题第四章第七题abc
题外话:一直是打算把这本书的全部课后编程题写完的,中间断了几个月,一直忙于其他事.现在开始补上. 这道题我不清楚我理解的题意是不是正确的,这道题可以练习用OpenCV实现透视变换(可以用于矫正在3维环 ...
- Having the Result Set of a Stored Proc Sent to You by RSS Feed.
Having the Result Set of a Stored Proc Sent to You by RSS Feed. by JBrooks 14. 十二月 2010 12:44 I wa ...