Codeforces Gym 100650C The Game of Efil DFS
The Game of Efil
Time Limit: 20 Sec
Memory Limit: 256 MB
题目连接
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=88443#problem/C
Description
Almost anyone who has ever taken a class in computer science is familiar with the “Game of Life,” John Conway’s cellular automata with extremely simple rules of birth, survival, and death that can give rise to astonishing complexity. The game is played on a rectangular field of cells, each of which has eight neighbors (adjacent cells). A cell is either occupied or not. The rules for deriving a generation from the previous one are: • If an occupied cell has 0, 1, 4, 5, 6, 7, or 8 occupied neighbors, the organism dies (0, 1: of loneliness; 4 thru 8: of overcrowding). • If an occupied cell has two or three occupied neighbors, the organism survives to the next generation. • If an unoccupied cell has three occupied neighbors, it becomes occupied (a birth occurs). One of the major problems researchers have looked at over the years is the existence of so-called “Garden of Eden” configurations in the Game of Life — configurations that could not have arisen as the result of the application of the rules to some previous configuration. We’re going to extend this question, which we’ll call the “Game of Efil”: Given a starting configuration, how many possible parent configurations could it have? To make matters easier, we assume a finite grid in which edge and corner cells “wrap around” (i.e., a toroidal surface). For instance, the 2 by 3 configuration: has exactly three possible parent configurations; they are: You should note that when counting neighbors of a cell, another cell may be counted as a neighbor more than once, if it touches the given cell on more than one side due to the wrap around. This is the case for the configurations above
Input
There will be multiple test cases. Each case will start with a line containing a pair of positive integers m and n, indicating the number of rows and columns of the configuration, respectively. The next line will contain a nonnegative integer k indicating the number of “live” cells in the configuration. The following k lines each contain the row and column number of one live cell, where row and column numbering both start at zero. The final test case is followed by a line where m = n = 0 — this line should not be processed. You may assume that the product of m and n is no more than 16.
Output
For each test case you should print one line of output containing the case number and the number of possible ancestors. Imitate the sample output below. Note that if there are 0 ancestors, you should print out Garden of Eden.
Sample Input
2 3 2 0 0 0 1 3 3 4 0 0 0 1 0 2 1 1 3 3 5 0 0 1 0 1 2 2 1 2 2 0 0
Sample Output
Case 1: 3 possible ancestors. Case 2: 1 possible ancestors. Case 3: Garden of Eden.
HINT
题意
给你一个病毒产生或者消亡的规律,然后让你求这个状态下的图的上一状态一共有多少种
题解:
数据范围很小,n*m<=16,所以直接dfs出所有的状态就好了
然后再check
代码:
//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200051
#define mod 10007
#define eps 1e-9
int Num;
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
//**************************************************************************************
int M[][];
int d[][];
int cnt[][];
int d2[][];
int n,m;
int ans=;
int dx[]={,-,,-,,-,,};
int dy[]={,-,-,,,,,-};
int C(int x,int k)
{
if(x==-)
x=k-;
if(x==k)
return ;
return x;
}
int check()
{
memset(cnt,,sizeof(cnt));
memset(d2,,sizeof(d2));
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
for(int k=;k<;k++)
{
int xx=C(i+dx[k],n);
int yy=C(j+dy[k],m);
if(d[xx][yy]==)
cnt[i][j]++;
}
}
}
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
if(d[i][j]==)
{
if(cnt[i][j]==||cnt[i][j]==)
d2[i][j]=;
else
d2[i][j]=;
}
else
{
if(cnt[i][j]==)
d2[i][j]=;
}
}
}
for(int i=;i<n;i++)
{
for(int j=;j<m;j++)
{
if(d2[i][j]!=M[i][j])
return ;
}
}
return ;
}
int tot=;
void dfs(int x,int y)
{
if(x==n)
{
if(check())
ans++;
return;
}
d[x][y]=;
if(y==m-)
dfs(x+,);
else
dfs(x,y+);
d[x][y]=;
if(y==m-)
dfs(x+,);
else
dfs(x,y+);
d[x][y]=;
}
int main()
{
int t=;
while(cin>>n>>m)
{
if(n==&&m==)
break;
memset(M,,sizeof(M));
ans=;
int k=read();
for(int i=;i<k;i++)
{
int x=read(),y=read();
M[x][y]=;
}
dfs(,);
if(ans!=)
printf("Case %d: %d possible ancestors.\n",t++,ans);
else
printf("Case %d: Garden of Eden.\n",t++);
}
}
Codeforces Gym 100650C The Game of Efil DFS的更多相关文章
- Codeforces Gym 100650C The Game of Efil 模拟+阅读题
原题链接:http://codeforces.com/gym/100650/attachments/download/3269/20052006-acmicpc-east-central-north- ...
- Codeforces Gym 100338I TV Show 傻逼DFS,傻逼题
Problem I. TV ShowTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest ...
- Codeforces Gym 101252D&&floyd判圈算法学习笔记
一句话题意:x0=1,xi+1=(Axi+xi%B)%C,如果x序列中存在最早的两个相同的元素,输出第二次出现的位置,若在2e7内无解则输出-1. 题解:都不到100天就AFO了才来学这floyd判圈 ...
- Codeforces Gym 101190M Mole Tunnels - 费用流
题目传送门 传送门 题目大意 $m$只鼹鼠有$n$个巢穴,$n - 1$条长度为$1$的通道将它们连通且第$i(i > 1)$个巢穴与第$\left\lfloor \frac{i}{2}\rig ...
- Codeforces Gym 101623A - 动态规划
题目传送门 传送门 题目大意 给定一个长度为$n$的序列,要求划分成最少的段数,然后将这些段排序使得新序列单调不减. 考虑将相邻的相等的数缩成一个数. 假设没有分成了$n$段,考虑最少能够减少多少划分 ...
- 【Codeforces Gym 100725K】Key Insertion
Codeforces Gym 100725K 题意:给定一个初始全0的序列,然后给\(n\)个查询,每一次调用\(Insert(L_i,i)\),其中\(Insert(L,K)\)表示在第L位插入K, ...
- Codeforces gym 101343 J.Husam and the Broken Present 2【状压dp】
2017 JUST Programming Contest 2.0 题目链接:Codeforces gym 101343 J.Husam and the Broken Present 2 J. Hu ...
- codeforces gym 100553I
codeforces gym 100553I solution 令a[i]表示位置i的船的编号 研究可以发现,应是从中间开始,往两边跳.... 于是就是一个点往两边的最长下降子序列之和减一 魔改树状数 ...
- CodeForces Gym 100213F Counterfeit Money
CodeForces Gym题目页面传送门 有\(1\)个\(n1\times m1\)的字符矩阵\(a\)和\(1\)个\(n2\times m2\)的字符矩阵\(b\),求\(a,b\)的最大公共 ...
随机推荐
- [HTML Q&A][转]使pre的内容自动换行
<pre> 元素可定义预格式化的文本.被包围在 pre 元素中的文本通常会保留空格和换行符.而文本也会呈现为等宽字体. <pre> 标签的一个常见应用就是用来表示计算机的源代码 ...
- codeforces 675D Tree Construction set
转自:http://blog.csdn.net/qwb492859377/article/details/51447350 #include <stdio.h> #include < ...
- linux-制作linux启动U盘
1. 使用的制作工具 Ø 下载需要制作启动盘的linux的iso文件 Ø 制作启动盘的软件linux usb creater Ø U盘(大小差不多需要4G的空间) 软件可以的下载的地址:http:// ...
- The Administration Console(管理员控制台)
当你的应用准备好了首次露面时,你要创建一个管理员用户以及将这个应用安装到App Engine上.你使用你的管理员帐户创建和管理这个应用,查看它的资源利用统计,消息日志以及更多.所有这些基于一个叫做管理 ...
- git常用命令[持续更新]
git commit -am "abc" 提交已经删除过的文件 git reset --hard HEAD 用于清除跟踪文件的修改
- MAC机常用快捷键整理表格
MAC机常用快捷键整理表格 范围 快捷键 说明 图形 (Command 键)在某些 Apple 键盘上,此键也可能为标志() Control (Control 键) Alt Opt ...
- 自动化运维工具ansible-如何设置客户端多python版本问题
问题:在使用ansible进行管理客户主机时,发现客户主机安装了多个版本的python,并且默认版本为3.0 shell>>cat list 192.168.2.9 shell>&g ...
- Win7下使Users数据与程序分离
大家知道,数据是用户最大的财富,但Windows系统默认的模式是将所有软件都安装在C盘,在Windows XP时代,数据文件夹会放在Document And Setting 目录下,在Win7时代,数 ...
- POJ 3268 Silver Cow Party (最短路dijkstra)
Silver Cow Party 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/D Description One cow fr ...
- codeforces 630B Moore's Law
B. Moore's Law time limit per test 0.5 seconds memory limit per test 64 megabytes input standard inp ...