有几天没写GC相关的文章了哈,今天我讲GC的方式是通过一个小的Sample来讲解,这个小的示例代码只有全部Build成功了才会有。地址为D:\coreclr2\coreclr\bin\obj\Windows_NT.x64.Debug\src\gc\sample,前缀路径大家替换成自己的路径就OK了。

  首先我们还是从main函数来入手吧。首先是初始化GC。

int __cdecl main(int argc, char* argv[])
{
//
// Initialize system info
// //初始化GC,如果初始化失败,则直接退出
if (!GCToOSInterface::Initialize())
{
return -1;
}

  下面我们来看看GCToOSInterface这个类,我只是把部分的方法罗列出来了,大家可以把这个理解为“接口”,这些方法,也应用到了设计模式,比如下面的方法的命名,是不是和EF很像呢?毕竟都是微软的东西,大家可以理解为,都是一家亲。另外,虚拟内存的分配 没有我们想的那么简单,它也是事物,对于一个事物,它的方法是丰富的。

// Interface that the GC uses to invoke OS specific functionality
//GC和操作系统衔接的桥梁,你可以理解为调用特定的操作系统的特定“方法”的方法
class GCToOSInterface
{
public: //
// Initialization and shutdown of the interface
// 初始化和 关闭GC对于OS(操作系统)的接口 // Initialize the interface implementation
// Return:
// true if it has succeeded, false if it has failed
static bool Initialize(); // Shutdown the interface implementation //终止这个方法;简单一点理解,就是.NET中的dispose()方法.
static void Shutdown(); //
// Virtual memory management
// //虚拟内存管理 // Reserve virtual memory range. //虚拟内存存储范围
// Parameters:
// address - starting virtual address, it can be NULL to let the function choose the starting address
// size - size of the virtual memory range
// alignment - requested memory alignment
// flags - flags to control special settings like write watching
// Return:
// Starting virtual address of the reserved range //参数:
//address(地址) - 初始的虚拟地址,如果为NULL,会让方法来选择初始的地址;
//size(大小) - 虚拟内存范围的定义域;
//alignment(队列) - 请求的存储队列
// flags(标识符) - 标识控制(比如是写,还是观察,或者是读); //返回:已经存储的虚拟内存的首地址;
static void* VirtualReserve(void *address, size_t size, size_t alignment, uint32_t flags); // Release virtual memory range previously reserved using VirtualReserve
//释放定义域内的虚拟内存,注意此定义域是“之前”分配的虚拟内存的定义域; // Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// Return:
// true if it has succeeded, false if it has failed //返回 - 成功:TRUE,否则:FAIL
static bool VirtualRelease(void *address, size_t size); // Commit virtual memory range. It must be part of a range reserved using VirtualReserve.
//提交虚拟内存的定义域;注意提交的定义域必须是包含在“VirtualReserve分配过的”内存块。
//注意这里的commit可以理解为.NET和SQL中的“事务”; // Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// Return:
// true if it has succeeded, false if it has failed
static bool VirtualCommit(void *address, size_t size); // Decomit virtual memory range.
//撤销提交 - 和VirtualCommit功能刚好相反; // Parameters:
// address - starting virtual address
// size - size of the virtual memory range
// Return:
// true if it has succeeded, false if it has failed
static bool VirtualDecommit(void *address, size_t size);
}

  下面我们来看一下Initalize这个方法,先 查询性能频率是什么意思呢?

bool GCToOSInterface::Initialize()
{
//查询性能频率
if (!::QueryPerformanceFrequency(&performanceFrequency))
{
return false;
} }

  我注意到performanceFrequency这个常量;来看看它的定义:

static LARGE_INTEGER performanceFrequency;

  再看LARGE_INTEGER,发现是一个联合体,我这里 科普一下联合体,就不麻烦大家去其他地方找资料了。

-------------------------------------------------------------分割线开始------------------------------------------------------------------------

  1. 1、union中可以定义多个成员,union的大小由最大的成员的大小决定。
  2. 2、union成员共享同一块大小的内存,一次只能使用其中的一个成员。
  3. 3、对某一个成员赋值,会覆盖其他成员的值(也不奇怪,因为他们共享一块内存。但前提是成员所占字节数相同,当成员所占字节数不同时只会覆盖相应字节上的值,比如对char成员赋值就不会把整个int成员覆盖掉,因为char只占一个字节,而int占四个字节)
  4. 4、联合体union的存放顺序是所有成员都从低地址开始存放的。

-------------------------------------------------------------分割线结束------------------------------------------------------------------------

//如果定义了MIDL_PASS,虽然我并不知道这是什么
#if defined(MIDL_PASS)
typedef struct _LARGE_INTEGER {
#else // MIDL_PASS
typedef union _LARGE_INTEGER {
struct {
DWORD LowPart;
LONG HighPart;
} DUMMYSTRUCTNAME;
struct {
DWORD LowPart;
LONG HighPart;
} u;
#endif //MIDL_PASS
LONGLONG QuadPart;
} LARGE_INTEGER;

  上面的大家需要理解一些C++的基础知识,具体的大家自己去百度,下面我们再来看看QueryPerformanceFrequency这个方法,这个方法是位于WDK里面的,具体的详细介绍看这里

  • typedef unsigned long       DWORD;
  • typedef long LONG;
  • typedef __int64 LONGLONG;  
WINAPI
QueryPerformanceFrequency(
_Out_ LARGE_INTEGER * lpFrequency
);

  下面来看一下完整的方法,想深入研究的,可以自行研究~

bool GCToOSInterface::Initialize()
{
//查询性能频率
if (!::QueryPerformanceFrequency(&performanceFrequency))
{
return false;
} //系统信息
SYSTEM_INFO systemInfo;
//此方法位于WDK8.1里面
GetSystemInfo(&systemInfo); //GCSystemInfo,通过WDK得到系统的信息,然后把信息赋给GCSystemInfo
g_SystemInfo.dwNumberOfProcessors = systemInfo.dwNumberOfProcessors;
g_SystemInfo.dwPageSize = systemInfo.dwPageSize;
g_SystemInfo.dwAllocationGranularity = systemInfo.dwAllocationGranularity; return true;
}

  

C++随笔:.NET CoreCLR之GC探索(3)的更多相关文章

  1. C++随笔:.NET CoreCLR之GC探索(4)

    今天继续来 带大家讲解CoreCLR之GC,首先我们继续看这个GCSample,这篇文章是上一篇文章的继续,如果有不清楚的,还请翻到我写的上一篇随笔.下面我们继续: // Initialize fre ...

  2. C++随笔:.NET CoreCLR之GC探索(2)

    首先谢谢 @dudu 和 @张善友 这2位大神能订阅我,本来在写这个系列以前,我一直对写一些核心而且底层的知识持怀疑态度,我为什么持怀疑态度呢?因为一般写高层语言的人99%都不会碰底层,其实说句实话, ...

  3. C++随笔:.NET CoreCLR之GC探索(1)

    一直是.NET程序员,但是.NET的核心其实还是C++,所以我准备花 一点时间来研究CoreCLR和CoreFX.希望这个系列的文章能给大家带来 帮助. GC的代码有很多很多,而且结构层次对于一个初学 ...

  4. CoreCLR源码探索(五) GC内存收集器的内部实现 调试篇

    在上一篇中我分析了CoreCLR中GC的内部处理, 在这一篇我将使用LLDB实际跟踪CoreCLR中GC,关于如何使用LLDB调试CoreCLR的介绍可以看: 微软官方的文档,地址 我在第3篇中的介绍 ...

  5. CoreCLR文档翻译 - GC的设计

    此文档来源于CoreCLR的BOTR(The Book of the Runtime), 点击打开原文 一切著作权归微软公司所有 GC的设计 作者: Maoni Stephens (@maoni0) ...

  6. CoreCLR源码探索(三) GC内存分配器的内部实现

    在前一篇中我讲解了new是怎么工作的, 但是却一笔跳过了内存分配相关的部分. 在这一篇中我将详细讲解GC内存分配器的内部实现. 在看这一篇之前请必须先看完微软BOTR文档中的"Garbage ...

  7. CoreCLR源码探索(四) GC内存收集器的内部实现 分析篇

    在这篇中我将讲述GC Collector内部的实现, 这是CoreCLR中除了JIT以外最复杂部分,下面一些概念目前尚未有公开的文档和书籍讲到. 为了分析这部分我花了一个多月的时间,期间也多次向Cor ...

  8. CoreCLR源码探索(一) Object是什么

    .Net程序员们每天都在和Object在打交道 如果你问一个.Net程序员什么是Object,他可能会信誓旦旦的告诉你"Object还不简单吗,就是所有类型的基类" 这个答案是对的 ...

  9. CoreCLR源码探索(二) new是什么

    前一篇我们看到了CoreCLR中对Object的定义,这一篇我们将会看CoreCLR中对new的定义和处理 new对于.Net程序员们来说同样是耳熟能详的关键词,我们每天都会用到new,然而new究竟 ...

随机推荐

  1. TechEmpower 13轮测试中的ASP.NET Core性能测试

    应用性能直接影响到托管服务的成本,因此公司在开发应用时需要格外注意应用所使用的Web框架,初创公司尤其如此.此外,糟糕的应用性能也会影响到用户体验,甚至会因此受到相关搜索引擎的降级处罚.在选择框架时, ...

  2. const,static,extern 简介

    const,static,extern 简介 一.const与宏的区别: const简介:之前常用的字符串常量,一般是抽成宏,但是苹果不推荐我们抽成宏,推荐我们使用const常量. 执行时刻:宏是预编 ...

  3. C#+HtmlAgilityPack+XPath带你采集数据(以采集天气数据为例子)

    第一次接触HtmlAgilityPack是在5年前,一些意外,让我从技术部门临时调到销售部门,负责建立一些流程和寻找潜在客户,最后在阿里巴巴找到了很多客户信息,非常全面,刚开始是手动复制到Excel, ...

  4. 【NLP】Python NLTK处理原始文本

    Python NLTK 处理原始文本 作者:白宁超 2016年11月8日22:45:44 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开 ...

  5. java设计模式之--单例模式

    前言:最近看完<java多线程编程核心技术>一书后,对第六章的单例模式和多线程这章颇有兴趣,我知道我看完书还是记不住多少的,写篇博客记录自己所学的只是还是很有必要的,学习贵在坚持. 单例模 ...

  6. C#创建、安装、卸载、调试Windows Service(Windows 服务)的简单教程

    前言:Microsoft Windows 服务能够创建在它们自己的 Windows 会话中可长时间运行的可执行应用程序.这些服务可以在计算机启动时自动启动,可以暂停和重新启动而且不显示任何用户界面.这 ...

  7. 【干货分享】流程DEMO-借款申请

    流程名: 借款申请   业务描述: 当员工个人在工作中需要进行借款时,通过此项流程提交借款申请,审批通过后,财务部进行款项支付.   流程相关文件: 流程包.xml WebService业务服务.xm ...

  8. iOS 方法修饰符

     一.NS_DESIGNATED_INITIALIZER 用来修饰init方法,被修饰的方法称为designated initializer:没有被这个修饰的init方法称为convenience i ...

  9. TCP/IP之Nagle算法与40ms延迟

    Nagle算法是针对网络上存在的微小分组可能会在广域网上造成拥塞而设计的.该算法要求一个TCP连接上最多只能有一个未被确认的未完成的小分组,在该分组确认到达之前不能发送其他的小分组.同时,TCP收集这 ...

  10. VPN连接常见错误汇总

    提示远程服务器没有响应. 这种情况有两种情况,一种是远程服务器出现故障.另一种是自己的电脑出现问题,具体原因我还没有找到,但是可以肯定的是注册表除了问题,一个终极的解决办法就是把注册表替换了.先将HK ...