Section 2.7     PA=LU

and Section 3.1   Vector Spaces and Subspaces

 


Transpose(转置)

example:

特殊情况,对称矩阵(symmetric matrices),例如:

思考:R^R(R的转置乘以R)有什么特殊的?

回答:always symmetric

why?

 


Permutation(置换)

P=execute row exchanges

之前A=LU是建立在no row exchanges 的基础上的,但不可能每一个矩阵都是完美的,有些矩阵需要通过行变换处理,

即PA=LU (any invertible A)

P= indentity matrix with reordered rows

置换矩阵是重新排列了的单位矩阵

counts reorderings(counts all the n * n permutations : n!

性质:

 


Vector Spaces

Example:

R^2= all 2 dimensional real vectors = “x-y”plane,

 

R^3= all vectors with 3 component

R^n = all vectors with n component

思考:not  a  vector space? what’s the condition?

回答:向量空间必须对数乘和加法两种运算是封闭的(线性组合封闭)

比如说,二维平面子空间  line in R^2 through zero vector

总结:

subspaces of R^2: all of R^2(itself), any line through zero vector (L), zero vector only (Z)

subspaces of R^3: all of R^3(itself), any plane through zero vector (P), any line through zero vector (L), zero vector only (Z)

example:

cols in R^3, all their combinations form a subspace called column space, C(A)

Linear Algebra Lecture5 note的更多相关文章

  1. Linear Algebra lecture1 note

    Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06   Lecture 1 ...

  2. Linear Algebra lecture9 note

    Linear independence Spanning a space Basis and dimension 以上概念都是针对a bunch of vectors, 不是矩阵里的概念   Supp ...

  3. Linear Algebra lecture10 note

    Four fundamental subspaces( for matrix A)   if A is m by n matrix: Column space  C(A) in Rm (列空间在m维实 ...

  4. Linear Algebra lecture8 note

    Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique   example: 若想方程有解 ...

  5. Linear Algebra lecture7 note

    Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R   rank o ...

  6. Linear Algebra lecture6 note

    Vector spaces and subspaces Column space of A solving Ax=b Null space of A   Vector space requiremen ...

  7. Linear Algebra lecture4 note

    Inverse of AB,A^(A的转置) Product of elimination matrices  A=LU (no row exchanges)   Inverse of AB,A^(A ...

  8. Linear Algebra lecture3 note

    Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A   Matrix multiplication ...

  9. Codeforces Gym101502 B.Linear Algebra Test-STL(map)

    B. Linear Algebra Test   time limit per test 3.0 s memory limit per test 256 MB input standard input ...

随机推荐

  1. Android 振动器

    今天介绍一下Android的振动器Vibrator,有三个方法来控制手机振动: 1.void vibrate(long milliseconds):控制手机振动milliseconds毫秒. 2.vo ...

  2. css3旋转

    首先创建一个容器如div,然后设置其相关的3d属性,主要是三个1.perspective 透视,值越小3D感越强,值越大视觉正常.2.perspective-origin,透视点一般居于容器的中心.3 ...

  3. Which ports are considered unsafe on Chrome

    1, // tcpmux 7, // echo 9, // discard 11, // systat 13, // daytime 15, // netstat 17, // qotd 19, // ...

  4. swift 命名,字符串

    命名: let  numberOfDogs = 6 +2; 字符串连接: let finishedMessage = username + "xx" + password; 字符串 ...

  5. Log4J日志管理类使用详解 (转)

    一.前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包.由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代j ...

  6. python wordcloud 对电影《我不是潘金莲》制作词云

    上个星期五(16/11/18)去看了冯小刚的最新电影<我不是潘金莲>,电影很长,有点黑色幽默.看完之后我就去知乎,豆瓣电影等看看大家对于这部电影的评价.果然这是一部很有争议的电影,无论是在 ...

  7. 图表控件FlowChart.NET详细介绍及免费下载地址

    FlowChart.NET是一款专业的.NET平台下的流程图及图表控件,它可以运行在任何C#, VB.NET或Delphi.NET语言编写的软件中.能够帮助你创建工作流程图.对象层次和关系图.网络拓扑 ...

  8. Java Swing 第01记 Hello Word

    首先来一个Java Swing的HelloWord程序. package cn.java.swing.chapter03; import javax.swing.JButton; import jav ...

  9. grunt安装与配置

    安装 CLI npm install -g grunt-cli//全局安装 npm init //初始化package.json npm init   命令会创建一个基本的package.json文件 ...

  10. Cannot forward after response has been committed

    项目:蒙文词语检索 日期:2016-05-01 提示:Cannot forward after response has been committed 出处:request.getRequestDis ...