Linear Algebra Lecture5 note
Section 2.7 PA=LU
and Section 3.1 Vector Spaces and Subspaces
Transpose(转置)

example:

特殊情况,对称矩阵(symmetric matrices),例如:


思考:R^R(R的转置乘以R)有什么特殊的?
回答:always symmetric

why?

Permutation(置换)
P=execute row exchanges

之前A=LU是建立在no row exchanges 的基础上的,但不可能每一个矩阵都是完美的,有些矩阵需要通过行变换处理,
即PA=LU (any invertible A)
P= indentity matrix with reordered rows
置换矩阵是重新排列了的单位矩阵
counts reorderings(counts all the n * n permutations : n!
性质:

Vector Spaces
Example:
R^2= all 2 dimensional real vectors = “x-y”plane,

R^3= all vectors with 3 component

R^n = all vectors with n component
思考:not a vector space? what’s the condition?
回答:向量空间必须对数乘和加法两种运算是封闭的(线性组合封闭)
比如说,二维平面子空间 line in R^2 through zero vector
总结:
subspaces of R^2: all of R^2(itself), any line through zero vector (L), zero vector only (Z)
subspaces of R^3: all of R^3(itself), any plane through zero vector (P), any line through zero vector (L), zero vector only (Z)
example:

cols in R^3, all their combinations form a subspace called column space, C(A)
Linear Algebra Lecture5 note的更多相关文章
- Linear Algebra lecture1 note
Professor: Gilbert Strang Text: Introduction to Linear Algebra http://web.mit.edu/18.06 Lecture 1 ...
- Linear Algebra lecture9 note
Linear independence Spanning a space Basis and dimension 以上概念都是针对a bunch of vectors, 不是矩阵里的概念 Supp ...
- Linear Algebra lecture10 note
Four fundamental subspaces( for matrix A) if A is m by n matrix: Column space C(A) in Rm (列空间在m维实 ...
- Linear Algebra lecture8 note
Compute solution of AX=b (X=Xp+Xn) rank r r=m solutions exist r=n solutions unique example: 若想方程有解 ...
- Linear Algebra lecture7 note
Computing the nullspace (Ax=0) Pivot variables-free variables Special solutions: rref( A)=R rank o ...
- Linear Algebra lecture6 note
Vector spaces and subspaces Column space of A solving Ax=b Null space of A Vector space requiremen ...
- Linear Algebra lecture4 note
Inverse of AB,A^(A的转置) Product of elimination matrices A=LU (no row exchanges) Inverse of AB,A^(A ...
- Linear Algebra lecture3 note
Matrix multiplication(4 ways!) Inverse of A Gauss-Jordan / find inverse of A Matrix multiplication ...
- Codeforces Gym101502 B.Linear Algebra Test-STL(map)
B. Linear Algebra Test time limit per test 3.0 s memory limit per test 256 MB input standard input ...
随机推荐
- Android 振动器
今天介绍一下Android的振动器Vibrator,有三个方法来控制手机振动: 1.void vibrate(long milliseconds):控制手机振动milliseconds毫秒. 2.vo ...
- css3旋转
首先创建一个容器如div,然后设置其相关的3d属性,主要是三个1.perspective 透视,值越小3D感越强,值越大视觉正常.2.perspective-origin,透视点一般居于容器的中心.3 ...
- Which ports are considered unsafe on Chrome
1, // tcpmux 7, // echo 9, // discard 11, // systat 13, // daytime 15, // netstat 17, // qotd 19, // ...
- swift 命名,字符串
命名: let numberOfDogs = 6 +2; 字符串连接: let finishedMessage = username + "xx" + password; 字符串 ...
- Log4J日志管理类使用详解 (转)
一.前言: log4j 是一个开放源码项目,是广泛使用的以Java编写的日志记录包.由于log4j出色的表现, 当时在log4j完成时,log4j开发组织曾建议sun在jdk1.4中用log4j取代j ...
- python wordcloud 对电影《我不是潘金莲》制作词云
上个星期五(16/11/18)去看了冯小刚的最新电影<我不是潘金莲>,电影很长,有点黑色幽默.看完之后我就去知乎,豆瓣电影等看看大家对于这部电影的评价.果然这是一部很有争议的电影,无论是在 ...
- 图表控件FlowChart.NET详细介绍及免费下载地址
FlowChart.NET是一款专业的.NET平台下的流程图及图表控件,它可以运行在任何C#, VB.NET或Delphi.NET语言编写的软件中.能够帮助你创建工作流程图.对象层次和关系图.网络拓扑 ...
- Java Swing 第01记 Hello Word
首先来一个Java Swing的HelloWord程序. package cn.java.swing.chapter03; import javax.swing.JButton; import jav ...
- grunt安装与配置
安装 CLI npm install -g grunt-cli//全局安装 npm init //初始化package.json npm init 命令会创建一个基本的package.json文件 ...
- Cannot forward after response has been committed
项目:蒙文词语检索 日期:2016-05-01 提示:Cannot forward after response has been committed 出处:request.getRequestDis ...