tetrahedron
题意:
求解一个四面体的内切球。
解法:
首先假设内切球球心为$(x0,x1,x2)$,可以用$r = \frac{3V}{S_1+S_2+S_3+S_4}$得出半径,
这样对于四个平面列出三个方程,解得
$x_n = \sum_{i=0}^3{Ai_{x_n} \cdot S_i } / (S_1 + S_2 + S_3 + S_4)$
这样,即可得出内切球。
时间复杂度$O(1)$。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> #define LD double
#define sqr(x) ((x)*(x))
#define eps 1e-13 using namespace std; struct node
{
LD x,y,z;
void scan()
{
scanf("%lf%lf%lf",&x,&y,&z);
}
void print()
{
printf("%.4lf %.4lf %.4lf\n",x,y,z);
}
LD length()
{
return sqrt(sqr(x)+sqr(y)+sqr(z));
}
node operator+(const node &tmp)
{
return (node){x+tmp.x,y+tmp.y,z+tmp.z};
}
node operator-(const node &tmp)
{
return (node){x-tmp.x,y-tmp.y,z-tmp.z};
}
node operator/(LD tmp)
{
return (node){x/tmp,y/tmp,z/tmp};
}
node operator*(LD tmp)
{
return (node){x*tmp,y*tmp,z*tmp};
}
}; node cross(node a,node b)
{
node ans;
ans.x = a.y*b.z - b.y*a.z;
ans.y = b.x*a.z - a.x*b.z;
ans.z = a.x*b.y - b.x*a.y;
return ans;
} LD dist(node a,node b)
{
return (b-a).length();
} LD dot(node a,node b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
} LD get_angle(node a,node b)
{
LD tmp = dot(a,b)/a.length()/b.length();
return acos(tmp);
} node get_node(node A,node B,node C)
{
LD Lth = (B-A).length() + (C-A).length() + (C-B).length();
cout << sqr(Lth-) << endl;
LD r = fabs(cross(B-A,C-A).length()) / Lth;
cout << r*r << endl;
node v1 = C-A;
node v2 = B-A;
node v = (v1+v2)/(v1+v2).length();
LD d = (C-A).length()/;
LD L = sqrt(sqr(d)+sqr(r));
v = v*L;
return A+v;
} int main()
{
node A,B,C,D;
while(~scanf("%lf%lf%lf",&A.x,&A.y,&A.z))
{
B.scan();
C.scan();
D.scan();
if(fabs(dot(cross(B-A,C-A),D-A)) < eps)
{
puts("O O O O");
continue;
}
LD S1 = fabs(cross(B-D,C-D).length())/;
LD S2 = fabs(cross(D-A,C-A).length())/;
LD S3 = fabs(cross(B-A,D-A).length())/;
LD S4 = fabs(cross(B-A,C-A).length())/;
LD Ve = fabs(dot(cross(B-A,C-A),D-A))/;
LD R = *Ve / ((S1+S2+S3+S4));
node ans;
ans.x = (S1*A.x + S2*B.x + S3*C.x + S4*D.x)/(S1+S2+S3+S4);
ans.y = (S1*A.y + S2*B.y + S3*C.y + S4*D.y)/(S1+S2+S3+S4);
ans.z = (S1*A.z + S2*B.z + S3*C.z + S4*D.z)/(S1+S2+S3+S4);
printf("%.4lf %.4lf %.4lf %.4lf\n",ans.x,ans.y,ans.z,R);
}
return ;
}
/*
0 0 0 2 0 0 0 0 2 0 2 0
0 0 0 2 0 0 3 0 0 4 0 0
*/
tetrahedron的更多相关文章
- HDU #5733 tetrahedron
tetrahedron 传送门 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) P ...
- CodeForces 166E -Tetrahedron解题报告
这是本人写的第一次博客,学了半年的基础C语言,初学算法,若有错误还请指正. 题目链接:http://codeforces.com/contest/166/problem/E E. Tetrahedro ...
- E. Tetrahedron(数学推导)
E. Tetrahedron 分类: AC路漫漫2013-08-08 16:07 465人阅读 评论(0) 收藏 举报 time limit per test 2 seconds memory lim ...
- 计算几何----判断空间点是否在一个四面体(tetrahedron)内部
DESCRIPTION: 判断空间点 P(x, y, z)是否在一个四面体的内部? Let the tetrahedron have vertices V1 = (x1, y1, z1) V2 = ( ...
- (四面体)CCPC网络赛 HDU5839 Special Tetrahedron
CCPC网络赛 HDU5839 Special Tetrahedron 题意:n个点,选四个出来组成四面体,要符合四面体至少四条边相等,若四条边相等则剩下两条边不相邻,求个数 思路:枚举四面体上一条线 ...
- HDU 5839 Special Tetrahedron (计算几何)
Special Tetrahedron 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n points ...
- HDU 5839 Special Tetrahedron
HDU 5839 Special Tetrahedron 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n ...
- HDU 5839 Special Tetrahedron 计算几何
Special Tetrahedron 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n points ...
- hdu 5726 tetrahedron 立体几何
tetrahedron/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Given four p ...
- CF 166E Tetrahedron
E. Tetrahedron time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
随机推荐
- CSDN - 进程结束后new出的内存会回收吗?
http://blog.csdn.net/stanjiang2010/article/details/5386647 关键词:内存回收
- 【php】在Windows2003下配置Apache2.4与php5.4
直接配置php一直使用如同<[php]本地开发环境的部署与helloworld>(点击打开链接)的一键傻瓜包,被批为极度不专业,关键是这些一键傻瓜包LAMP的版本号不好控制.port什么的 ...
- babylon使用3dsmax导出的obj文件时模型偏暗
将模型的material的diffuseTexture设置为null即可
- C#特性类的使用
特性类的使用过程: 第一步:定义一个特性类,定义一些成员来包含验证时需要的数据:第二步:创建特性类实例:创建一个特性类的实例,里面包含着验证某一个属性或者字段需要的数据.将该实例关联到某个属性上面.第 ...
- Angular中的内置指令和自定义指令
NG中的指令,到底是什么(what)? 为什么会有(why)?以及怎样使用(how)? What: 在NG中,指令扩展HTML功能,为 DOM 元素调用方法.定义行为绑定数据等. Why: 最大程度减 ...
- 远程请求json数据,list中显示
public class MainActivity extends Activity { protected static final int WHAT_REQUEST_SUCCESS = 1; pr ...
- Hadoop安全
kerberos-hadoop配置常见问题汇总 注意事项 常见问题如下(其中前面两点最多): 各目录属主组属性修改. 对于hadoop,需要改为yarn:hadoop/mapred:hdoop/hdf ...
- Android Weekly Notes Issue #242
Android Weekly Issue #242 January 29th, 2017 Android Weekly Issue #242 本期内容包括: Android中常用的设计模式; 基于No ...
- HDU4549 M斐波那契数列 —— 斐波那契、费马小定理、矩阵快速幂
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Li ...
- hdu1078 FatMouse and Cheese —— 记忆化搜索
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1078 代码1: #include<stdio.h>//hdu 1078 记忆化搜索 #in ...