tetrahedron
题意:
求解一个四面体的内切球。
解法:
首先假设内切球球心为$(x0,x1,x2)$,可以用$r = \frac{3V}{S_1+S_2+S_3+S_4}$得出半径,
这样对于四个平面列出三个方程,解得
$x_n = \sum_{i=0}^3{Ai_{x_n} \cdot S_i } / (S_1 + S_2 + S_3 + S_4)$
这样,即可得出内切球。
时间复杂度$O(1)$。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath> #define LD double
#define sqr(x) ((x)*(x))
#define eps 1e-13 using namespace std; struct node
{
LD x,y,z;
void scan()
{
scanf("%lf%lf%lf",&x,&y,&z);
}
void print()
{
printf("%.4lf %.4lf %.4lf\n",x,y,z);
}
LD length()
{
return sqrt(sqr(x)+sqr(y)+sqr(z));
}
node operator+(const node &tmp)
{
return (node){x+tmp.x,y+tmp.y,z+tmp.z};
}
node operator-(const node &tmp)
{
return (node){x-tmp.x,y-tmp.y,z-tmp.z};
}
node operator/(LD tmp)
{
return (node){x/tmp,y/tmp,z/tmp};
}
node operator*(LD tmp)
{
return (node){x*tmp,y*tmp,z*tmp};
}
}; node cross(node a,node b)
{
node ans;
ans.x = a.y*b.z - b.y*a.z;
ans.y = b.x*a.z - a.x*b.z;
ans.z = a.x*b.y - b.x*a.y;
return ans;
} LD dist(node a,node b)
{
return (b-a).length();
} LD dot(node a,node b)
{
return a.x*b.x + a.y*b.y + a.z*b.z;
} LD get_angle(node a,node b)
{
LD tmp = dot(a,b)/a.length()/b.length();
return acos(tmp);
} node get_node(node A,node B,node C)
{
LD Lth = (B-A).length() + (C-A).length() + (C-B).length();
cout << sqr(Lth-) << endl;
LD r = fabs(cross(B-A,C-A).length()) / Lth;
cout << r*r << endl;
node v1 = C-A;
node v2 = B-A;
node v = (v1+v2)/(v1+v2).length();
LD d = (C-A).length()/;
LD L = sqrt(sqr(d)+sqr(r));
v = v*L;
return A+v;
} int main()
{
node A,B,C,D;
while(~scanf("%lf%lf%lf",&A.x,&A.y,&A.z))
{
B.scan();
C.scan();
D.scan();
if(fabs(dot(cross(B-A,C-A),D-A)) < eps)
{
puts("O O O O");
continue;
}
LD S1 = fabs(cross(B-D,C-D).length())/;
LD S2 = fabs(cross(D-A,C-A).length())/;
LD S3 = fabs(cross(B-A,D-A).length())/;
LD S4 = fabs(cross(B-A,C-A).length())/;
LD Ve = fabs(dot(cross(B-A,C-A),D-A))/;
LD R = *Ve / ((S1+S2+S3+S4));
node ans;
ans.x = (S1*A.x + S2*B.x + S3*C.x + S4*D.x)/(S1+S2+S3+S4);
ans.y = (S1*A.y + S2*B.y + S3*C.y + S4*D.y)/(S1+S2+S3+S4);
ans.z = (S1*A.z + S2*B.z + S3*C.z + S4*D.z)/(S1+S2+S3+S4);
printf("%.4lf %.4lf %.4lf %.4lf\n",ans.x,ans.y,ans.z,R);
}
return ;
}
/*
0 0 0 2 0 0 0 0 2 0 2 0
0 0 0 2 0 0 3 0 0 4 0 0
*/
tetrahedron的更多相关文章
- HDU #5733 tetrahedron
tetrahedron 传送门 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) P ...
- CodeForces 166E -Tetrahedron解题报告
这是本人写的第一次博客,学了半年的基础C语言,初学算法,若有错误还请指正. 题目链接:http://codeforces.com/contest/166/problem/E E. Tetrahedro ...
- E. Tetrahedron(数学推导)
E. Tetrahedron 分类: AC路漫漫2013-08-08 16:07 465人阅读 评论(0) 收藏 举报 time limit per test 2 seconds memory lim ...
- 计算几何----判断空间点是否在一个四面体(tetrahedron)内部
DESCRIPTION: 判断空间点 P(x, y, z)是否在一个四面体的内部? Let the tetrahedron have vertices V1 = (x1, y1, z1) V2 = ( ...
- (四面体)CCPC网络赛 HDU5839 Special Tetrahedron
CCPC网络赛 HDU5839 Special Tetrahedron 题意:n个点,选四个出来组成四面体,要符合四面体至少四条边相等,若四条边相等则剩下两条边不相邻,求个数 思路:枚举四面体上一条线 ...
- HDU 5839 Special Tetrahedron (计算几何)
Special Tetrahedron 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n points ...
- HDU 5839 Special Tetrahedron
HDU 5839 Special Tetrahedron 题目链接http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n ...
- HDU 5839 Special Tetrahedron 计算几何
Special Tetrahedron 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5839 Description Given n points ...
- hdu 5726 tetrahedron 立体几何
tetrahedron/center> 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5726 Description Given four p ...
- CF 166E Tetrahedron
E. Tetrahedron time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...
随机推荐
- 今日BBC
1.随身英语 Brain training 怎样训练大脑? link 2.地道英语 In good nick 品质好.没有损坏(主要是指古老的东西,比方古董) link 3.今日新闻 -------- ...
- html的dtd声明
其实DOCTYPE声明,因为很多时候团队里没有做规范应该用哪个,而且几种不同的编辑工具新建出的html页面标准也不同:这就可能一个jsp页面写了几百行甚至上千行了,然后发现某个样式必须要改DOCTYP ...
- OpenStack部署到Hadoop的四种方案
随着企业開始同一时候利用云计算和大数据技术.如今应当考虑怎样将这些工具结合使用.在这样的情况下,企业将实现最佳的分析处理能力.同一时候利用私有云的高速弹性 (rapid elasticity) 和单一 ...
- 基于EasyIPCamera实现的数字网络摄像机IPCamera的模拟器IPC RTSP Simulator
还记得去年在北京安博会上,看到一些厂家的展示台上,各种船舶.公路.车辆的高清视频直播,好奇这些数据是怎么接到现场的,现场成百上千家展台,不可能有那么大的带宽供应,细想数据肯定不是实时的,果然,盯着看了 ...
- EasyDarwin EasyClient开源流媒体播放器,支持多窗口显示
EasyDarwin开源团队开源的EasyClient客户端将支持流媒体采集.编码.推送.播放.抓图.录像.Onvif 等全套功能(大家持续关注我们Github的commit),其中播放功能是开源流媒 ...
- 九度OJ 1139:最大子矩阵 (矩阵运算、缓存)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1014 解决:376 题目描述: 已知矩阵的大小定义为矩阵中所有元素的和.给定一个矩阵,你的任务是找到最大的非空(大小至少是1 * 1)子矩 ...
- Möbius strip
en.wikipedia.org/wiki/Möbius_strip http://mechproto.olin.edu/final_projects/average_jo.html Fabricat ...
- react遇到的各种坑
标签里用到<label for>的,for 要写成htmlFor 标签里的class要写成className 组件首字母一定要大写 单标签最后一定要闭合 如果html里要空格转义, 注意不 ...
- WebViewJavascriptBridge的简单应用
原文链接:http://www.jianshu.com/p/ca496cb680fe前言 当下,很多APP里面都会有HTML5网页,我们除了简单的用WebView加载显示外,很多情况下,我们还需要和W ...
- css中IE判断语句 if !IE
1. <!–[if !IE]><!–> 除IE外都可识别 <!–<![endif]–> 2. <!–[if IE]> 所有的IE可识别 <! ...