一、 YOLOv2安装使用

1. darknet YOLOv2安装

git clone https://github.com/pjreddie/darknet
cd darknet
make


或到网址上下载darknet文件夹,解压后在darknet文件夹下执行make编译。

2. 预测模型权重下载

wget https://pjreddie.com/media/files/yolo.weights

或到网址上下载yolo.weights,放到darknet目录下。

3. 目标检测

./darknet detect cfg/yolo.cfg yolo.weights data/dog.jpg

预测过程大约需要15S,结果保存在darknet目录下predictions.jpg

二、 YOLOv2重新训练

1. 准备数据&&打标

数据包括训练数据和验证数据,所有数据需要把要识别的物体事先标注出来,标注工具推荐使用labelImg

labelImg下载地址:http://download.csdn.net/download/dcrmg/9974195

打标的结果保存在xml文件中。

2. 建立训练和验证数据文件夹/提取图片名称

在darknet文件夹下建立4个文件夹----trainImage、validateImage、trainImageXML、validateImageXML,分别用来存放训练图片、验证图片、训练图片的xml标签、验证图片的xml标签。
在darknet文件夹下建立2个txt文件————trainImageId.txt和validateImageId.txt,分别用来存放训练图片和测试图片的名称(含后缀不包含目录)。  这一步可以在上边4个文件夹手动建立完成的基础上调用python脚本自动完成,createID.py下载地址:https://code.csdn.net/snippets/2601808
把createdID.py文件放在darkent目录下直接运行就可以分别生成trainImageId.txt和validateImageId.txt

3. xml标签转换成txt/图片路径提取

训练需要把图片的xml格式标签转换成txt文件格式,并且需要把所有的训练和验证数据图片的路径提取到一个单独的txt文件里,供训练的时候读取,本步骤可以使用python脚本自动完成,trans.py下载地址:https://code.csdn.net/snippets/2601809
下载完成之后把 trans.py 放到darknet目录下,需要把 trans.py 中classes分类的内容改成自己的分类之后再运行即可。

运行之后生成一系列文件,分别是:
XXX.txt——存放训练/验证图片的xml标签转换成的txt文件,自动生成的所有训练和验证的txt文件保存在对应的trainImage和validateImage文件夹下;
trainImagePath.txt/validateImagePath.txt——存放训练/验证图片的名称(包含后缀)和完整路径;

4. 修改配置文件

4.1 修改cfg/voc.data文件

voc.data是整个训练流程的引入文件,记录了训练的 classes(分类)、train(训练数据)、valid(验证数据)、names(训练模型)、backup(训练结果保存路径)。根据自己的情况分别做以下更改:

  • classes = N (N为自己的分类数量,有10类不同的对象,N = 10)
  • train = /home/XXX/darknet/trainImagePath.txt
  • valid = /home/XXX/darknet/validateImagePath.txt
  • names = data/voc.names (需要修改原voc.names文件中参数)
  • backup = backup (训练结果保存在darknet/backup/目录下)

4.2 修改data/voc.names文件

voc.names文件存放的是所有的分类,原始文件一共有20类,每类单独占一行,一共20行,根据自己的分类情况做更改,例如有3种分类,分别是class1、class2、class3,则更改voc.names文件为:
class1
class2
class3

4.3 修改cfg/yolo-voc.2.0.cfg文件

yolo-voc.2.0.cfg文件定义yolo训练使用的网络,有两处需要更改:

  • classes = N (N为自己的分类数)
  • 最后一个convolutional层中 filters = (classes+ coords+ 1)* (NUM),classes是分类数,coords和NUM在 voc.2.0.cfg中分别设定为4和5,所以如果有3个分类,则修改filters的值为40((3+4+1)×5 =40 )

4.4 下载预训练卷积权重文件darknet19_448.conv.23

在该卷积权重文件的基础上做进一步的参数调整,下载地址: http://pjreddie.com/media/files/darknet19_448.conv.23
下载完成之后放在cfg文件夹目录下。

5. yolo训练

yolo默认训练会迭代45000次,训练之前可以根据自己的情况修改迭代次数,进入cfg/yolo_voc.2.0.cfg修改max_batches的值。
在darknet目录下执行训练命令:

./darknet detector train cfg/voc.data cfg/yolo-voc.2.0.cfg cfg/darknet19_448.conv.23

训练完成之后的权重文件保存在darknet/backup文件夹下。

6. 训练结果测试

运行以下命令执行测试:

./darknet detector test cfg/voc.data cfg/yolo-voc.2.0.cfg backup/yolo-voc_final.weights 01.jpg

7. 附

附 CreateID.py 和 trans.py 代码

CreateID.py:

# -*- coding: utf-8 -*-
import os;
import shutil; def listname(path,idtxtpath):
filelist = os.listdir(path); # 该文件夹下所有的文件(包括文件夹)
filelist.sort()
f = open(idtxtpath, 'w');
for files in filelist: # 遍历所有文件
Olddir = os.path.join(path, files); # 原来的文件路径
if os.path.isdir(Olddir): # 如果是文件夹则跳过
continue;
f.write(files);
f.write('\n');
f.close(); savepath = os.getcwd()
imgidtxttrainpath = savepath+"/trainImageId.txt"
imgidtxtvalpath = savepath + "/validateImageId.txt"
listname(savepath + "/trainImage",imgidtxttrainpath)
listname(savepath + "/validateImage",imgidtxtvalpath)
print "trainImageId.txt && validateImageId.txt have been created!"

trans.py:

import xml.etree.ElementTree as ET
import pickle
import string
import os
import shutil
from os import listdir, getcwd
from os.path import join
import cv2 sets=[('2012', 'train')] classes = ["class1","class2","class3","class4"] def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h) def convert_annotation(image_id,flag,savepath): if flag == 0:
in_file = open(savepath+'/trainImageXML/%s.xml' % (os.path.splitext(image_id)[0]))
out_file = open(savepath+'/trainImage/%s.txt' % (os.path.splitext(image_id)[0]), 'w')
tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size') img = cv2.imread('./trainImage/'+str(image_id))
h = img.shape[0]
w = img.shape[1] elif flag == 1:
in_file = open(savepath+'/validateImageXML/%s.xml' % (os.path.splitext(image_id)[0]))
out_file = open(savepath+'/validateImage/%s.txt' % (os.path.splitext(image_id)[0]), 'w') tree = ET.parse(in_file)
root = tree.getroot()
size = root.find('size') img = cv2.imread('./validateImage/' + str(image_id))
h = img.shape[0]
w = img.shape[1] for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n') wd = getcwd() for year, image_set in sets:
savepath = os.getcwd();
idtxt = savepath + "/validateImageId.txt";
pathtxt = savepath + "/validateImagePath.txt";
image_ids = open(idtxt).read().strip().split()
list_file = open(pathtxt, 'w')
s = '\xef\xbb\xbf'
for image_id in image_ids:
nPos = image_id.find(s)
if nPos >= 0:
image_id = image_id[3:]
list_file.write('%s/validateImage/%s\n' % (wd, image_id))
print(image_id)
convert_annotation(image_id, 1, savepath)
list_file.close() idtxt = savepath + "/trainImageId.txt";
pathtxt = savepath + "/trainImagePath.txt" ;
image_ids = open(idtxt).read().strip().split()
list_file = open(pathtxt, 'w')
s = '\xef\xbb\xbf'
for image_id in image_ids:
nPos = image_id.find(s)
if nPos >= 0:
image_id = image_id[3:]
list_file.write('%s/trainImage/%s\n'%(wd,image_id))
print(image_id)
convert_annotation(image_id,0,savepath)
list_file.close()

darknet YOLOv2安装及数据集训练的更多相关文章

  1. 搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型

    原文地址:搭建 MobileNet-SSD 开发环境并使用 VOC 数据集训练 TensorFlow 模型 0x00 环境 OS: Ubuntu 1810 x64 Anaconda: 4.6.12 P ...

  2. Caffe系列4——基于Caffe的MNIST数据集训练与测试(手把手教你使用Lenet识别手写字体)

    基于Caffe的MNIST数据集训练与测试 原创:转载请注明https://www.cnblogs.com/xiaoboge/p/10688926.html  摘要 在前面的博文中,我详细介绍了Caf ...

  3. tensorflow中使用mnist数据集训练全连接神经网络-学习笔记

    tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: ...

  4. darknet(yolov2)移植到caffe框架

    yolov2到caffe的移植主要分两个步骤:一.cfg,weights转换为prototxt,caffemodel1.下载源码:git clone https://github.com/marvis ...

  5. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  6. darknet是如何对数据集做resize的?

    在准备数据集时,darknet并不要求我们预先对图片resize到固定的size. darknet自动帮我们做了图像的resize. darknet训练前处理 本文所指的darknet版本:https ...

  7. darknet的安装及报错解决

    darknet 是YOLO网络的一个框架,安装见官网:https://pjreddie.com/darknet/ 跟着步骤就可以安装好了. 由于官网是全英文的,所以本文根据官网进行中文释义. 本人在按 ...

  8. TensorFlow入门-Tianic数据集训练

    import pandas as pd import tensorflow as tf from sklearn.model_selection import train_test_split imp ...

  9. 目标检测:keras-yolo3之制作VOC数据集训练指南

    制作VOC数据集指南 Github:https://github.com/hyhouyong/keras-yolo3 LabelImg标注工具(windows环境下):https://github.c ...

随机推荐

  1. android IntentService生命周期问题

    假设须要在onHandleIntent之前运行一些操作.比方须要停止当前正在运行的任务.可在onStart做这个操作. 须要注意的是必须在onStart函数的最后(运行完我的操作后)调用super.o ...

  2. Centos6.0使用第三方YUM源(EPEL,RPMForge,RPMFusion)

    yum是centos下很方便的rpm包管理工具,配置第三方软件库使你的软件库更加丰富.以下简单的讲下配置的步骤. 首先,需要安装yum-priorities插件: yum install yum-pr ...

  3. 我的ngnix 配置内容

    #user nobody; worker_processes 1; #error_log logs/error.log; #error_log logs/error.log notice; #erro ...

  4. 【设计模式】C++单例模式的几种写法——Java自动加载内部类对象,C++怎么破?

    单例模式是最简单的设计模式,就让我像玩简单的游戏一样写下去吧. v1: 简单模式 和这个版本有过一面之缘,但不敢苟同. class Singleton { private: Singleton() { ...

  5. Android App 启动页(Splash)黑/白闪屏现象产生原因与解决办法(转)

    转载: Android App 启动页(Splash)黑/白闪屏现象产生原因与解决办法   首先感谢博主分享,本文作为学习记录 惊鸿一瞥 微信的启动页,相信大家都不陌生. 不知道大家有没有发现一个现象 ...

  6. WCF服务返回XML或JSON格式数据

    第一种方式public string GetData( string format) { string res = null; Student stu = new Student { StuID = ...

  7. 下面哪个进制能表述 13*16=244是正确的?)[中国台湾某计算机硬件公司V2010年5月面试题]

    A.5B.7C.9D.11解析:13如果是一个十进制的话,它可以用13=1*101+3*100来表示.现在我们不知道13是几进制,那我们姑且称其X进制.X进制下的13转化为十进制可以用13=1*X1+ ...

  8. 使用EasyPusher进行手机低延时直播推流便捷开发

    基于EasyPusher sdk库工程(即library module)实现一个推送客户端非常简单便捷,因为sdk端已经将各种烦人的状态维护\错误检查\权限判定\UI同步等功能都实现了,开发者仅仅只需 ...

  9. ES中DSL查询相关

    elasticsearch中的API:http://www.cnblogs.com/yjf512/p/4862992.html elasticsearch查询系列:http://blog.csdn.n ...

  10. 九度OJ 1148:Financial Management(财务管理) (平均数)

    与1141题相同. 时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:843 解决:502 题目描述: Larry graduated this year and finally has a ...