Important Sisters

Time Limit: 7000/7000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 766    Accepted Submission(s): 192

Problem Description
There are N clones of Misaka Mikoto (sisters) forming the Misaka network. Some pairs of sisters are connected so that one of them can pass message to the other one. The sister with serial number N is the source of all messages. All the other sisters get message directly or indirectly from her. There might be more than one path from sister #N to sister #I, but some sisters do appear in all of these paths. These sisters are called important sister of sister #K. What are the important sisters of each sister?
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: the number of sisters 1 ≤ N ≤ 50,000 and the number of connections 0 ≤ M ≤ 100,000. The following M lines are M connections 1 ≤ Ai, Bi ≤ N, indicating that Ai can pass message to Bi.
 
Output
For each test case, output the sum of the serial numbers of important sisters of each sister, separated with single space.
 
Sample Input
3 2
3 2
2 1
5 7
3 2
1 2
2 1
3 1
3 2
5 3
5 4
 
Sample Output
6 5 3
9 10 8 9 5
 
Author
Zejun Wu (watashi)
 
Source

分析:

支配树板子题...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<stack>
//by NeighThorn
using namespace std; const int maxn=50000+5,maxm=100000+5; int n,m,tot,f[maxn],fa[maxn],id[maxn],dfn[maxn],idom[maxn],semi[maxn],node[maxn];
long long ans[maxn]; stack<int> dom[maxn]; struct M{ int cnt,hd[maxn],to[maxm],nxt[maxm]; inline void init(void){
cnt=0;
memset(hd,-1,sizeof(hd));
} inline void add(int x,int y){
to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
} }G,tr; inline bool cmp(int x,int y){
return dfn[semi[x]]<dfn[semi[y]];
} inline int find(int x){
if(f[x]==x)
return x;
int fx=find(f[x]);
node[x]=min(node[f[x]],node[x],cmp);
return f[x]=fx;
} inline void dfs(int x){
dfn[x]=++tot;id[tot]=x;
for(int i=tr.hd[x];i!=-1;i=tr.nxt[i])
if(!dfn[tr.to[i]])
dfs(tr.to[i]),fa[tr.to[i]]=x;
} inline void LT(void){
dfs(n);dfn[0]=tot<<1;
for(int i=tot,x;i>=1;i--){
x=id[i];
if(i!=1){
for(int j=G.hd[x],v;j!=-1;j=G.nxt[j])
if(dfn[G.to[j]]){
v=G.to[j];
if(dfn[v]<dfn[x]){
if(dfn[v]<dfn[semi[x]])
semi[x]=v;
}
else{
find(v);
if(dfn[semi[node[v]]]<dfn[semi[x]])
semi[x]=semi[node[v]];
}
}
dom[semi[x]].push(x);
}
while(dom[x].size()){
int y=dom[x].top();dom[x].pop();find(y);
if(semi[node[y]]!=x)
idom[y]=node[y];
else
idom[y]=x;
}
for(int j=tr.hd[x];j!=-1;j=tr.nxt[j])
if(fa[tr.to[j]]==x)
f[tr.to[j]]=x;
}
for(int i=2,x;i<=tot;i++){
x=id[i];
if(semi[x]!=idom[x])
idom[x]=idom[idom[x]];
}
idom[id[1]]=0;
} inline long long calc(int x){
if(ans[x])
return ans[x];
if(x==n)
return ans[x]=n;
return ans[x]=calc(idom[x])+x;
} signed main(void){
while(scanf("%d%d",&n,&m)!=EOF){
G.init();tr.init();tot=0;
memset(id,0,sizeof(id));
memset(ans,0,sizeof(ans));
memset(dfn,0,sizeof(dfn));
memset(semi,0,sizeof(semi));
memset(idom,0,sizeof(idom));
for(int i=1;i<=n;i++)
f[i]=node[i]=i;
for(int i=1,x,y;i<=m;i++)
scanf("%d%d",&x,&y),tr.add(x,y),G.add(y,x);
LT();
for(int i=1;i<=n;i++){
if(!dfn[i])
printf("%d",0);
else
printf("%lld",calc(i));
if(i<n)
printf(" ");
}
puts("");
}
return 0;
}

  


By NeighThorn

HDOJ Important Sisters的更多相关文章

  1. 【23.91%】【hdu 4694】Important Sisters("支NMLGB配树"后记)(支配树代码详解)

    Time Limit: 7000/7000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Submission( ...

  2. [HDU]4694 Important Sisters(支配树)

    支配树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  3. [hdu4694]Important Sisters

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给定一张图,求每个点到第n个点必须经过的点的编号之和.n<=50000 一道支配树裸题 然后统计答案的时候可以正着推,ans[i]=an ...

  4. HDU.4694.Important Sisters(支配树)

    HDU \(Description\) 给定一张简单有向图,起点为\(n\).对每个点求其支配点的编号和. \(n\leq 50000\). \(Solution\) 支配树. 还是有点小懵逼. 不管 ...

  5. hdu 4694 Important Sisters【支配树】

    求出支配树输出到father的和即可 支配树见:https://blog.csdn.net/a710128/article/details/49913553 #include<iostream& ...

  6. Dominator Tree & Lengauer-Tarjan Algorithm

    问题描述 给出一张有向图,可能存在环,对于所有的i,求出从1号点到i点的所有路径上的必经点集合. 什么是支配树 两个简单的小性质—— 1.如果i是j的必经点,而j又是k的必经点,则i也是k的必经点. ...

  7. HDOJ并查集题目 HDOJ 1213 HDOJ 1242

    Problem Description Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. ...

  8. 算法——A*——HDOJ:1813

    Escape from Tetris Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdoj 1116 Play on Words 【并查集】+【欧拉路】

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

随机推荐

  1. ZR#317.【18 提高 2】A(计算几何 二分)

    题意 Sol 非常好的一道题,幸亏这场比赛我没打,不然我估计要死在这个题上qwq 到不是说有多难,关键是细节太多了,我和wcz口胡了一下我的思路,然后他写了一晚上没调出来qwq 解法挺套路的,先提出一 ...

  2. python字典按照k,v来排序

    按照 k 排序 按照 v 排序

  3. Python知识点入门笔记——Python的基本数据类型

    Python的数字分为4种类型:整数(int).浮点数(float).布尔值(bool).复数(complex). type()函数可以知道数据的类型,如type(233)是int型,type(233 ...

  4. 关于js中onclick字符串传参问题(html="")

    规则: 外变是“”,里面就是‘’外边是‘’,里边就是“”   示例: var a="111"; var html="<a onclick='selecthoods( ...

  5. 自动发现项目中的URL,django1版本和django2版本

    一.django 1 版本 routers.py import re from collections import OrderedDict from django.conf import setti ...

  6. 11,scrapy框架持久化存储

    今日总结 基于终端指令的持久化存储 基于管道的持久化存储 今日详情 1.基于终端指令的持久化存储 保证爬虫文件的parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的 ...

  7. django 连接MYSQL时,数据迁移时报:django.db.utils.InternalError: (1366, "Incorrect string value: '\\xE9\\x97\\xAE\\xE9\\xA2\\x98' for column 'name' at row 5")

    django 连接MYSQL时,数据迁移时报:django.db.utils.InternalError: (1366, "Incorrect string value: '\\xE9\\x ...

  8. 成为Java高手的25个学习要点

    成为Java高手的25个学习要点 想成为Java大牛吗?不妨来学习这25个要点. 1. 你需要精通面向对象分析与设计(OOA/OOD).涉及模式(GOF,J2EEDP)以及综合模式.你应该了解UML, ...

  9. Hadoop数据管理介绍及原理分析

    Hadoop数据管理介绍及原理分析 最近2014大数据会议正如火如荼的进行着,Hadoop之父Doug Cutting也被邀参加,我有幸听了他的演讲并获得亲笔签名书一本,发现他竟然是左手写字,当然这个 ...

  10. Selenium中如何运行 auto.exe 文件

    Runtime exe = Runtime.getRuntime(); try{ String str = "D:\\Auto上传文件\\photo.exe"; exe.exec( ...