Important Sisters

Time Limit: 7000/7000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 766    Accepted Submission(s): 192

Problem Description
There are N clones of Misaka Mikoto (sisters) forming the Misaka network. Some pairs of sisters are connected so that one of them can pass message to the other one. The sister with serial number N is the source of all messages. All the other sisters get message directly or indirectly from her. There might be more than one path from sister #N to sister #I, but some sisters do appear in all of these paths. These sisters are called important sister of sister #K. What are the important sisters of each sister?
 
Input
There are multiple test cases. Process to the End of File.
The first line of each test case contains two integers: the number of sisters 1 ≤ N ≤ 50,000 and the number of connections 0 ≤ M ≤ 100,000. The following M lines are M connections 1 ≤ Ai, Bi ≤ N, indicating that Ai can pass message to Bi.
 
Output
For each test case, output the sum of the serial numbers of important sisters of each sister, separated with single space.
 
Sample Input
3 2
3 2
2 1
5 7
3 2
1 2
2 1
3 1
3 2
5 3
5 4
 
Sample Output
6 5 3
9 10 8 9 5
 
Author
Zejun Wu (watashi)
 
Source

分析:

支配树板子题...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<stack>
//by NeighThorn
using namespace std; const int maxn=50000+5,maxm=100000+5; int n,m,tot,f[maxn],fa[maxn],id[maxn],dfn[maxn],idom[maxn],semi[maxn],node[maxn];
long long ans[maxn]; stack<int> dom[maxn]; struct M{ int cnt,hd[maxn],to[maxm],nxt[maxm]; inline void init(void){
cnt=0;
memset(hd,-1,sizeof(hd));
} inline void add(int x,int y){
to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
} }G,tr; inline bool cmp(int x,int y){
return dfn[semi[x]]<dfn[semi[y]];
} inline int find(int x){
if(f[x]==x)
return x;
int fx=find(f[x]);
node[x]=min(node[f[x]],node[x],cmp);
return f[x]=fx;
} inline void dfs(int x){
dfn[x]=++tot;id[tot]=x;
for(int i=tr.hd[x];i!=-1;i=tr.nxt[i])
if(!dfn[tr.to[i]])
dfs(tr.to[i]),fa[tr.to[i]]=x;
} inline void LT(void){
dfs(n);dfn[0]=tot<<1;
for(int i=tot,x;i>=1;i--){
x=id[i];
if(i!=1){
for(int j=G.hd[x],v;j!=-1;j=G.nxt[j])
if(dfn[G.to[j]]){
v=G.to[j];
if(dfn[v]<dfn[x]){
if(dfn[v]<dfn[semi[x]])
semi[x]=v;
}
else{
find(v);
if(dfn[semi[node[v]]]<dfn[semi[x]])
semi[x]=semi[node[v]];
}
}
dom[semi[x]].push(x);
}
while(dom[x].size()){
int y=dom[x].top();dom[x].pop();find(y);
if(semi[node[y]]!=x)
idom[y]=node[y];
else
idom[y]=x;
}
for(int j=tr.hd[x];j!=-1;j=tr.nxt[j])
if(fa[tr.to[j]]==x)
f[tr.to[j]]=x;
}
for(int i=2,x;i<=tot;i++){
x=id[i];
if(semi[x]!=idom[x])
idom[x]=idom[idom[x]];
}
idom[id[1]]=0;
} inline long long calc(int x){
if(ans[x])
return ans[x];
if(x==n)
return ans[x]=n;
return ans[x]=calc(idom[x])+x;
} signed main(void){
while(scanf("%d%d",&n,&m)!=EOF){
G.init();tr.init();tot=0;
memset(id,0,sizeof(id));
memset(ans,0,sizeof(ans));
memset(dfn,0,sizeof(dfn));
memset(semi,0,sizeof(semi));
memset(idom,0,sizeof(idom));
for(int i=1;i<=n;i++)
f[i]=node[i]=i;
for(int i=1,x,y;i<=m;i++)
scanf("%d%d",&x,&y),tr.add(x,y),G.add(y,x);
LT();
for(int i=1;i<=n;i++){
if(!dfn[i])
printf("%d",0);
else
printf("%lld",calc(i));
if(i<n)
printf(" ");
}
puts("");
}
return 0;
}

  


By NeighThorn

HDOJ Important Sisters的更多相关文章

  1. 【23.91%】【hdu 4694】Important Sisters("支NMLGB配树"后记)(支配树代码详解)

    Time Limit: 7000/7000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Total Submission( ...

  2. [HDU]4694 Important Sisters(支配树)

    支配树模板 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  3. [hdu4694]Important Sisters

    来自FallDream的博客,未经允许,请勿转载,谢谢. 给定一张图,求每个点到第n个点必须经过的点的编号之和.n<=50000 一道支配树裸题 然后统计答案的时候可以正着推,ans[i]=an ...

  4. HDU.4694.Important Sisters(支配树)

    HDU \(Description\) 给定一张简单有向图,起点为\(n\).对每个点求其支配点的编号和. \(n\leq 50000\). \(Solution\) 支配树. 还是有点小懵逼. 不管 ...

  5. hdu 4694 Important Sisters【支配树】

    求出支配树输出到father的和即可 支配树见:https://blog.csdn.net/a710128/article/details/49913553 #include<iostream& ...

  6. Dominator Tree & Lengauer-Tarjan Algorithm

    问题描述 给出一张有向图,可能存在环,对于所有的i,求出从1号点到i点的所有路径上的必经点集合. 什么是支配树 两个简单的小性质—— 1.如果i是j的必经点,而j又是k的必经点,则i也是k的必经点. ...

  7. HDOJ并查集题目 HDOJ 1213 HDOJ 1242

    Problem Description Today is Ignatius' birthday. He invites a lot of friends. Now it's dinner time. ...

  8. 算法——A*——HDOJ:1813

    Escape from Tetris Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. hdoj 1116 Play on Words 【并查集】+【欧拉路】

    Play on Words Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) T ...

随机推荐

  1. 多种语言书写 “ HelloWorld ”

    最基本的C: #include<stdio.h> int main(int argc, char const *argv[]) { printf("HelloWorld\n&qu ...

  2. Java - Java 中的三种 ClassLoader

    1.虚拟机类加载器(称为“bootstrap class loader”),它本身没有父类加载器,它负责加载虚拟机的内置类,由于它是用C.C++写的,所以Java无法拿到其class文件,返回的都是空 ...

  3. PHP实现消息推送

    我们做web的时候偶尔会遇到消息推送,如图示例(红框位置) 当我们遇到这种功能要如何开发呢?下边将我了解的两种方法整理一下: 一.ajax轮询,定时去请求服务器数据 通过观察thinkphp官网貌似也 ...

  4. 【linux】CPU,内存对网站的影响

    如果读写非常多,建议内存大点 如果涉及到的计算非常多,那就升级CPU

  5. url地址形式的传参格式拼接

    例子一: var gid=pid=pizi=sn=newsn=sn_price=city_id=123; var params = 'gid=' +123; params += '&pid=' ...

  6. B1051 复数乘法(15 分)

    [PAT]B1051 复数乘法(15 分) - 路明天 - 博客园 https://www.cnblogs.com/hebust/p/9496809.html 在此对四舍五入输出结果做总结. 对于do ...

  7. A1065 A+B and C (64bit) (20)(20 分)

    A1065 A+B and C (64bit) (20)(20 分) Given three integers A, B and C in [-2^63^, 2^63^], you are suppo ...

  8. 51NOD 1128正整数分组V2 二分答案

    这道题是典型的二分答案法.但是首先难道这道题的时候我进行了一系列的思考,甚至联想到了之前多校中类似于树状划分的问题...原因是大家都包括N各节点K个输入.. 实际上最开始联想到了应当使用二分法“枚举” ...

  9. Curl之解决中文乱码

    利用iconv命令 curl http://www.baidu.com | iconv -f gb2312 -t utf-8 iconv命令可以将一种已知的字符集文件转换成另一种已知的字符集文件.它的 ...

  10. Aizu 2560 Point Distance FFT

    题意: 有一个\(N \times N\)的方阵,第\(x\)行第\(y\)列有\(C_{x,y}\)个点\((0 \leq C_{x,y} \leq 9)\). 任选两个不同的点,求两点欧几里德距离 ...