【bzoj3687】简单题 背包dp+STL-bitset
题目描述
小呆开始研究集合论了,他提出了关于一个数集四个问题:
1.子集的异或和的算术和。
2.子集的异或和的异或和。
3.子集的算术和的算术和。
4.子集的算术和的异或和。
目前为止,小呆已经解决了前三个问题,还剩下最后一个问题还没有解决,他决定把这个问题交给你,未来的集训队队员来实现。
输入
第一行,一个整数n。
第二行,n个正整数,表示01,a2….,。
输出
一行,包含一个整数,表示所有子集和的异或和。
样例输入
2
1 3
样例输出
6
题解
背包dp+STL-bitset
首先想想暴力怎么做?设f[i]表示i出现在算术和中的次数,那么对于a[j],有f[i]+=f[i-a[j]]。最后统计哪些数出现了奇数次即可。
那么怎么优化这个暴力?我们其实不需要知道某个数出现的具体次数,只需要知道它出现次数的奇偶性即可。
所以我们可以使用bitset压位来解决。
具体实现还是比较简单的,直接位运算然后异或即可。
#include <cstdio>
#include <bitset>
using namespace std;
bitset<2000010> f;
int main()
{
int n , i , x , m = 0 , ans = 0;
scanf("%d" , &n);
f[0] = 1;
for(i = 1 ; i <= n ; i ++ ) scanf("%d" , &x) , f ^= (f << x) , m += x;
for(i = 1 ; i <= m ; i ++ ) if(f[i]) ans ^= i;
printf("%d\n" , ans);
return 0;
}
【bzoj3687】简单题 背包dp+STL-bitset的更多相关文章
- BZOJ3687 简单题 【bitset】
BZOJ3687 简单题 Description 小呆开始研究集合论了,他提出了关于一个数集四个问题: 1.子集的异或和的算术和. 2.子集的异或和的异或和. 3.子集的算术和的算术和. 4.子集的算 ...
- bzoj3687简单题*
bzoj3687简单题 题意: 给个集合,求所有子集的元素和的异或和.集合元素个数≤1000,整个集合的元素和≤2000000 题解: 用bitset维护每个子集元素和的个数是奇数还是偶数.每次读入一 ...
- 【BZOJ3687】简单题 背包+bitset
[BZOJ3687]简单题 Description 小呆开始研究集合论了,他提出了关于一个数集四个问题:1.子集的异或和的算术和.2.子集的异或和的异或和.3.子集的算术和的算术和.4.子集的算术和的 ...
- bzoj3687简单题(dp+bitset优化)
3687: 简单题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 861 Solved: 399[Submit][Status][Discuss] ...
- [Bzoj3687]简单题(bitset)
3687: 简单题 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1150 Solved: 565[Submit][Status][Discuss] ...
- BZOJ3687: 简单题(dp+bitset)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1138 Solved: 556[Submit][Status][Discuss] Descripti ...
- 算法复习——bitset(bzoj3687简单题)
题目: Description 小呆开始研究集合论了,他提出了关于一个数集四个问题:1.子集的异或和的算术和.2.子集的异或和的异或和.3.子集的算术和的算术和.4.子集的算术和的异或和. 目前 ...
- 「bzoj3687: 简单题」
题目 发现需要一个\(O(n\sum a_i )\)的做法 于是可以直接做一个背包,\(dp[i]\)表示和为\(i\)的子集是否有奇数种 \(bitset\)优化一下就好了 #include< ...
- BZOJ3687: 简单题
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3687 小呆开始研究集合论了,他提出了关于一个数集四个问题: 1.子集的异或和的算术和. 2.子 ...
随机推荐
- 让你不再害怕指针——C指针详解(经典,非常详细)
http://blog.csdn.net/soonfly/article/details/51131141 前言:复杂类型说明 要了解指针,多多少少会出现一些比较复杂的类型,所以我先介绍一下如何完全理 ...
- AngularJs学习笔记-组件生命周期
组件生命周期 (1)组件生命周期钩子 constructor:组件创建时被创建 ngOnChanges: 父组件修改或初始化子组件的输入属性时被调用,如果子组件没有输入属性,则永远不会被调用,它的首次 ...
- C#创建和使用ActiveX组件
开发基于.Net平台上的程序员是很难从本质上把Visual C#和ActiveX组件联起来,虽然在使用Visual C#开发应用程序时,有时为了快速开发或者由于.Net FrameWork SDK的不 ...
- 问题008:java 中代码块的风格有几种?单行注释可否嵌套?多行注释可否嵌套?
有两种:一种是次行风格,英文称为next-line 一种是是行尾风格,英文称为 end-of-line 举例 行尾风格 public class HelloWorld{ public static v ...
- antd-design-pro 服务代理问题
公司希望又一个后台管理页面.因为之前技术栈是react 所以选择了antd-design-pro作为后台的框架. 在连调api的时候,困惑怎么去代理.因为网上查到很多都是1.0的版本,而我现在用的是2 ...
- webpack 4.x 解决 webpack-dev-server工具在webpack构建的项目中使用问题
webpack-dev-server工具能实现自动打包编译和热更新 首先将webpack-dev-server安装到项目中 npm install webpack-dev-server -D 这时在命 ...
- Linux磁盘I/O性能监控——iostat
iostat命令可以查看CPU利用率和磁盘性能相关数据,有时候我们会觉得系统响应慢,传数据很慢,这个慢可能是多方面原因导致的,如CPU利用率高.网络差.系统平均负载高甚至是磁盘已经损坏了.对此,系统性 ...
- SummerVocation_Leaning--java动态绑定(多态)
概念: 动态绑定:在执行期间(非编译期间)判断所引用的对象的实际类型,根据实际类型调用其相应的方法.如下例程序中,根据person对象的成员变量pet所引用的不同的实际类型调用相应的方法. 具体实现好 ...
- 转载:java分布式服务框架Dubbo的介绍与使用
1. Dubbo是什么? Dubbo是一个分布式服务框架,致力于提供高性能和透明化的RPC远程服务调用方案,以及SOA服务治理方案.简单的说,dubbo就是个服务框架,如果没有分布式的需求,其实是不需 ...
- 麦子学院python开发全套完整无加密课程
点击了解更多Python课程>>> 麦子学院python开发全套完整无加密课程 第一阶段:Python基础准备 1.Web前端开发之HTML+CSS基础入门 2.Javascript ...