把转置矩阵看成逆矩阵吓傻了233

首先按照矩乘推一下式子:

\[D=\sum_{i=1}^n a[i]*(\sum_{j=1}^n a[j]*b[j][i])-c[i]
\]

\[D=(\sum_{i=1}^n \sum_{j=1}^n a[i]*a[j]*b[j][i])-(\sum_{i=1}^n a[i]*c[i])
\]

这样,很容易看出b是贡献部分,当a[i]a[j]同时为1的时候贡献b[i][j]+b[j][i],否则不贡献;c是花费部分,a[i]选1就花费c[i]

有正负收益,所以考虑最小割,首先默认b全选,ans=Σb,然后建图,设最后割出来和s相连为选0,和t相连为选1:

连接(s,i,c[i]),表示如果割掉这条边i选0则花费c[i];

连接(i,id(i,j),inf),(j,id(i,j),inf),注意这里!id(i,j)==id(j,i),表示一个无序二元组,这样连边表示不可割以便把操作引到边上

连接(id(i,j),t,b[i][j]+b[j][i]),表示ij中有一个选0(就是不断c的那条边)就需要割这一条

跑最小割即可

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
const int N=505;
int n,b[N][N],id[N][N],tot,s,t,h[N*N],cnt=1,le[N*N],ans;
struct qwe
{
int ne,to,va;
}e[N*N*10];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
memset(le,0,sizeof(le));
queue<int>q;
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
int dinic()
{
int r=0;
while(bfs())
r+=dfs(s,1e9);
return r;
}
int main()
{
n=tot=read();
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
b[i][j]=read();
if(i<=j)
id[i][j]=id[j][i]=++tot;
ans+=b[i][j];
}
s=0,t=tot+1;
for(int i=1;i<=n;i++)
ins(s,i,read());
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
ins(i,id[i][j],1e9);
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++)
ins(id[i][j],t,b[i][j]+b[j][i]);
printf("%d\n",ans-dinic());
return 0;
}

bzoj 3996: [TJOI2015]线性代数【最小割】的更多相关文章

  1. bzoj 3996: [TJOI2015]线性代数 [最小割]

    3996: [TJOI2015]线性代数 题意:给出一个NN的矩阵B和一个1N的矩阵C.求出一个1*N的01矩阵A.使得 \(D=(A * B-C)* A^T\)最大.其中A^T为A的转置.输出D.每 ...

  2. bzoj 3996 [TJOI2015]线性代数——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3996 b[ i ][ j ] 要计入贡献,当且仅当 a[ i ] = 1 , a[ j ] ...

  3. ●BZOJ 3996 [TJOI2015]线性代数

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3996 题解: 好题啊.(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)首先,那个式子可 ...

  4. bzoj 3996: [TJOI2015]线性代数

    Description 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D Input 第一行输入一个整数N,接 ...

  5. [TJOI2015]线性代数(最小割)

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 题解 观察上面那个式子发现,当一个bij有贡献时当 ...

  6. BZOJ3996[TJOI2015]线性代数——最小割

    题目描述 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 输入 第一行输入一个整数N,接下来N行输入B矩阵, ...

  7. 【BZOJ 3996】 3996: [TJOI2015]线性代数 (最小割)

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1368  Solved: 832 Description 给 ...

  8. 【BZOJ-3996】线性代数 最小割-最大流

    3996: [TJOI2015]线性代数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1054  Solved: 684[Submit][Statu ...

  9. BZOJ 3996 线性代数 最小割

    题意: 给出一个N*N的矩阵B和一个1*N的矩阵C.求出一个1*N的01矩阵A.使得 D=(A*B-C)*A^T最大.其中A^T为A的转置.输出D 分析: 这道题比较绕,我们需要看清题目中那个式子的本 ...

随机推荐

  1. java四种线程池简介,使用

    为什么使用线程池 1.减少了创建和销毁线程的次数,每个工作线程都可以被重复利用,可执行多个任务. 2.可以根据系统的承受能力,调整线程池中工作线线程的数目,防止消耗过多的内存 3.web项目应该创建统 ...

  2. Hibernate表关系映射之一对多映射

    一.基本概述 在表中的一对多,是使用外键关联,通过一张表的一个键另一个表的外键来建立一多关系;而在类中表示为一个类中有一个集合属性包含对方类的很多对象,而在另一个类中,只包含前述类的一个对象,从而实现 ...

  3. 2018-11-13-常用模块1 (time random os sys)

    1.时间模块 time 2.随机数模块 random 3.与操作系统交互模块 os 4.系统模块 sys 在我们真正开始学习之前我们先解决下面几个问题,打好学习模块的小基础,以便更好的学习模块. (1 ...

  4. 使用注解来构造IoC容器-转

    新手,对于一些觉得有用的东西,直接转过来用了,自己理解的比较肤浅 使用注解来构造IoC容器 用注解来向Spring容器注册Bean.需要在applicationContext.xml中注册<co ...

  5. 第三章 Java 的基本程序设计结构

    1.Java基本数据类型 Java中一共有8种基本数据类型. 4种整形:int-4字节.long-8字节.short-2字节.byte-1字节 2中浮点型:float-4字节.double-8字节 1 ...

  6. Linux环境下安装Tomcat

    一.准备安装的tar包 1.将安装包放在服务器上:apache-tomcat-7.0.81.tar.gz 2.将安装包解压:tar -zxvf apache-tomcat-7.0.81.tar.gz ...

  7. [数据挖掘课程笔记]关联规则挖掘 - Apriori算法

    两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count ...

  8. Code Review 规范

    CodeReview规范 CodeReivew 标准 通用原则 提交 PR 的代码必须保证自测通过 只 review 代码规范.业务逻辑,不 review 架构设计(那是写代码前应该做的事情) 干掉重 ...

  9. SDUT 2402 水杯最小表面积问题

    水杯 Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 天气逐渐变热了,准备考研的高童鞋打算在夏天来临之前自己动手造一个水杯,以备口 ...

  10. CSU1553 Good subsequence —— 二分 + RMQ/线段树

    题目链接: http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1553 Description Give you a sequence of n n ...