UVA - 1220 Party at Hali-Bula (树形DP)
有 n 个员工,n-1个从属关系。
不能同时选择某个员工和他的直接上司,问最多可以选多少人,以及选法是否唯一。

树上的最大独立集问题。只不过多了一个判断唯一性。
dp[u][0]表示不选这个点的状态,dp[u][1]表示选这个点的状态。
如果不选 u, 那么 u点状态是由 dp[v][0] 或者 dp[v][1],大的那个点转移过来,唯一性同时也转移。
如果选 u , 那么 u点状态是由所有的 dp[v][0] 转移过来,所以只有所有的 dp[v][0]状态的都唯一时,dp[u][1]才唯一。
另外,我一直 WA 的原因在于给员工编号的时候没有判断有没有出现过,默认每行的第一个都是没有出现过的。瞎改了好久。
吸取教训。
#include <bits/stdc++.h>
using namespace std;
#define maxn 100010 vector<int> son[maxn], fa[maxn];
int same[maxn], dp[maxn][], f[maxn][]; void DP(int k)
{
dp[k][] = , dp[k][] = ; f[k][] = , f[k][] = ;
for (int i = ; i < son[k].size(); i++)
{
int v = son[k][i];
DP(v); dp[k][] += max(dp[v][], dp[v][]); if (dp[v][] == dp[v][]) f[k][] = ;
if (dp[v][] > dp[v][] && f[v][] == ) f[k][] = ;
if (dp[v][] < dp[v][] && f[v][] == ) f[k][] = ; dp[k][] += dp[v][];
if (f[v][] == ) f[k][] = ;
}
} void init(int n)
{
for (int i = ; i < n; i++)
son[i].clear();
memset(f, , sizeof());
} int main()
{
int n;
while(~scanf("%d", &n) && n)
{
init(n);
map<string, int> idx;
string s;
cin >> s;
idx[s] = ;
int id = ; for (int i = ; i <= n-; i++)
{
string x, y;
cin >> x >> y;
if (!idx.count(x))
idx[x] = ++id;
if (!idx.count(y))
idx[y] = ++id;
son[idx[y]].push_back(idx[x]);
} DP(); int uniq = ;
if (dp[][] > dp[][] && f[][] == ) uniq = ;
else if (dp[][] < dp[][] && f[][] == ) uniq = ;
else if (dp[][] == dp[][]) uniq = ; printf("%d %s\n", max(dp[][], dp[][]), uniq ? "Yes":"No");
}
}
UVA - 1220 Party at Hali-Bula (树形DP)的更多相关文章
- UVa 1220 - Party at Hali-Bula(树形DP)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVa 1220 Party at Hali-Bula (树形DP,最大独立集)
题意:公司有 n 个人形成一个树形结构,除了老板都有唯一的一个直系上司,要求选尽量多的人,但不能同时选一人上和他的直系上司,问最多能选多少人,并且是不是唯一的方案. 析:这个题几乎就是树的最大的独立集 ...
- 【UVA 1380】 A Scheduling Problem (树形DP)
A Scheduling Problem Description There is a set of jobs, say x1, x2,..., xn <tex2html_verbatim_ ...
- UVA Live Archive 4015 Cave (树形dp,分组背包)
和Heroes Of Might And Magic 相似,题目的询问是dp的一个副产物. 距离是不好表示成状态的,但是可以换一个角度想,如果知道了从一个点向子树走k个结点的最短距离, 那么就可以回答 ...
- UVa 10859 - Placing Lampposts 树形DP 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA - 1218 Perfect Service(树形dp)
题目链接:id=36043">UVA - 1218 Perfect Service 题意 有n台电脑.互相以无根树的方式连接,现要将当中一部分电脑作为server,且要求每台电脑必须连 ...
- 树形DP UVA 1292 Strategic game
题目传送门 /* 题解:选择一个点,它相邻的点都当做被选择,问最少选择多少点将所有点都被选择 树形DP:dp[i][0/1]表示当前点选或不选,如果选,相邻的点可选可不选,取最小值 */ /***** ...
- uva 1292 树形dp
UVA 1292 - Strategic game 守卫城市,城市由n个点和n-1条边组成的树,要求在点上安排士兵,守卫与点相连的边.问最少要安排多少士兵. 典型的树形dp.每一个点有两个状态: dp ...
- UVA 1484 - Alice and Bob's Trip(树形DP)
题目链接:1484 - Alice and Bob's Trip 题意:BOB和ALICE这对狗男女在一颗树上走,BOB先走,BOB要尽量使得总路径权和大,ALICE要小,可是有个条件,就是路径权值总 ...
随机推荐
- Spring创建对象的几种方法
一.通过构造器 无参构造器 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns=" ...
- CentOS7.2配置本地yum源
1.检查是否有本地yum源 1)检查是否能连网 ping www.baidu.com 2)检查是否有本地yum源 yum list 2.挂载镜像文件 以上检查,说明确实是内网,也确实没有本地yum源, ...
- base-command
命令分类 自带命令 工具型 文件系统 第三方命令 CLI GUI 操作文件系统 pwd(print working directory) ls(list files) ls 列出当前目录文件 ls 目 ...
- SQL数据库基础三
- Servlet--HttpServlet
一.Servlet 接口(javax.servlet) 定义: public interface Servlet Implemented by: FacesServlet, Gene ...
- keil下JLINK在线调试仿真设置,SWD连接
keil下JLINK在线调试仿真设置,以下三个步骤搞定: 有时我们编译时会遇到空间不足的情况,首先我们应该把 flash和RAM的size 设置为当前所用芯片的大小,如下我使用了一个片上flash 2 ...
- iOS开发 - Protocol协议及委托代理(Delegate)
因为Object-C是不支持多继承的,所以很多时候都是用Protocol(协议)来代替.Protocol(协议)只能定义公用的一套接口,但不能提供具体的实现方法.也就是说,它只告诉你要做什么,但具体怎 ...
- react中constructor和super()以及super(props)的区别。
react中这两个API出镜率超级高,但是一直不太懂这到底是干嘛的,有什么用:今天整理一下,方便自己查看同时方便大家. 1.constructor( )-----super( )的基本含义 const ...
- Java多线程常见问题
1. 进程和线程之间有什么不同? 一个进程是一个独立(self contained)的运行环境,它可以被看作一个程序或者一个应用.而线程是在进程中执行的一个任务.Java运行环境是一个包含了不同的类和 ...
- MVC与Holla聊天工具
MVC 是一种设计模式, 它将应用划分为 3 个部分 : 数据( 模型). 展现层( 视图) 和用 户交互层( 控制器). 换句话说, 一个事件的发生是这样的过程 : 1. 用户和应用产生交互. 2. ...