map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败。所以用户在提交map/reduce作业时应该在一个合理的范围内,这样既可以增强系统负载匀衡,也可以降低任务失败的开销。

1 map的数量

map的数量通常是由hadoop集群的DFS块大小确定的,也就是输入文件的总块数,正常的map数量的并行规模大致是每一个Node是10~100个,对于CPU消耗较小的作业可以设置Map数量为300个左右,但是由于hadoop的每一个任务在初始化时需要一定的时间,因此比较合理的情况是每个map执行的时间至少超过1分钟。具体的数据分片是这样的,InputFormat在默认情况下会根据hadoop集群的DFS块大小进行分片,每一个分片会由一个map任务来进行处理,当然用户还是可以通过参数mapred.min.split.size参数在作业提交客户端进行自定义设置。还有一个重要参数就是mapred.map.tasks,这个参数设置的map数量仅仅是一个提示,只有当InputFormat 决定了map任务的个数比mapred.map.tasks值小时才起作用。同样,Map任务的个数也能通过使用JobConf 的conf.setNumMapTasks(int num)方法来手动地设置。这个方法能够用来增加map任务的个数,但是不能设定任务的个数小于Hadoop系统通过分割输入数据得到的值。当然为了提高集群的并发效率,可以设置一个默认的map数量,当用户的map数量较小或者比本身自动分割的值还小时可以使用一个相对交大的默认值,从而提高整体hadoop集群的效率。

2 reduece的数量

reduce在运行时往往需要从相关map端复制数据到reduce节点来处理,因此相比于map任务。reduce节点资源是相对比较缺少的,同时相对运行较慢,正确的reduce任务的个数应该是0.95或者1.75 *(节点数 ×mapred.tasktracker.tasks.maximum参数值)。如果任务数是节点个数的0.95倍,那么所有的reduce任务能够在 map任务的输出传输结束后同时开始运行。如果任务数是节点个数的1.75倍,那么高速的节点会在完成他们第一批reduce任务计算之后开始计算第二批 reduce任务,这样的情况更有利于负载均衡。同时需要注意增加reduce的数量虽然会增加系统的资源开销,但是可以改善负载匀衡,降低任务失败带来的负面影响。同样,Reduce任务也能够与 map任务一样,通过设定JobConf 的conf.setNumReduceTasks(int num)方法来增加任务个数。

3 reduce数量为0

有些作业不需要进行归约进行处理,那么就可以设置reduce的数量为0来进行处理,这种情况下用户的作业运行速度相对较高,map的输出会直接写入到 SetOutputPath(path)设置的输出目录,而不是作为中间结果写到本地。同时Hadoop框架在写入文件系统前并不对之进行排序

Hadoop 中关于 map,reduce 数量设置的更多相关文章

  1. 深度分析如何在Hadoop中控制Map的数量

    深度分析如何在Hadoop中控制Map的数量 guibin.beijing@gmail.com 很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数 ...

  2. 深度分析如何在Hadoop中控制Map的数量(摘抄)

    很多文档中描述,Mapper的数量在默认情况下不可直接控制干预,因为Mapper的数量由输入的大小和个数决定.在默认情况下,最终input占据了多少block,就应该启动多少个Mapper.如果输入的 ...

  3. Hadoop学习:Map/Reduce初探与小Demo实现

    原文地址:https://blog.csdn.net/liyong199012/article/details/25423221 一.    概念知识介绍 Hadoop MapReduce是一个用于处 ...

  4. Hive中自定义Map/Reduce示例 In Java

    Hive支持自定义map与reduce script.接下来我用一个简单的wordcount例子加以说明. 如果自己使用Java开发,需要处理System.in,System,out以及key/val ...

  5. 如何在hadoop中控制map的个数

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  6. Python中的Map/Reduce

    MapReduce是一种函数式编程模型,用于大规模数据集(大于1TB)的并行运算.概念"Map(映射)"和"Reduce(归约)",是它们的主要思想,都是从函数 ...

  7. 如何在hadoop中控制map的个数 分类: A1_HADOOP 2015-03-13 20:53 86人阅读 评论(0) 收藏

    hadooop提供了一个设置map个数的参数mapred.map.tasks,我们可以通过这个参数来控制map的个数.但是通过这种方式设置map的个数,并不是每次都有效的.原因是mapred.map. ...

  8. Python中 filter | map | reduce | lambda的用法

      1.filter(function, sequence):对sequence中的item依次执行function(item),将执行结果为True的item组成一个List/String/Tupl ...

  9. python 中的map(), reduce(), filter

    据说是函数式编程的一个函数(然后也有人tucao py不太适合干这个),在我看来算是pythonic的一种写法. 简化了我们的操作,比方我们想将list中的数字都加1,最基本的可能是编写一个函数: I ...

随机推荐

  1. js中三目运算符和&& || 符的个人浅见

    这两天看到别人写的代码,感觉很牛逼,如下,大神请忽视 $(".lgn").on("click", function() { var a = {}; a.logi ...

  2. java之String类型

    一:定义 String是复杂类型,是特殊的复杂类型. 二:创建 两种创建形式: String s = "abc"; String s = new String("abc& ...

  3. 转:详解JMeter正则表达式(2)

    例如, 引用名称:MYREF. 正则表达式:name="(.+?)" value="(.+?)". 模板:$1$$2$. 不要用/ /封装正则表达式. 如下变量 ...

  4. RabbitMQ持久化编码注意事项

    以Java语言,MQ客户端为amqp-client作为示例 1.基本原则 direct模式,由生产者声明队列名,消费者也声明队列名 topic模式,由生产者声明交换器名,由消费者声明队列名+交换器名+ ...

  5. 《高性能Javascript》读书笔记-1

    第一章 加载和执行 当浏览器执行JavaScript代码时,不能同时做其他任何事情(单一进程),意味着<script>标签每次出现都霸道地让页面等带脚本的解析和执行(每个文件必须等到前一个 ...

  6. 4、Web应用程序中的安全向量 -- over-posting(重复提交)

    模型绑定是ASP.NET MVC提供的强大功能,可遵照命名约定将输入元素映射到模型属性,从而极大地简化了处理用户输入的过程,然而,这也成为了攻击的另一种没接,给攻击者提供了一个填充模型属性的机会,右下 ...

  7. shell脚本学习(四)

    1.文件权限 1.1 用户有一个称为setuid(S)的特殊权限,它出现在执行权限(x)的位置,setuid权限允许用户以拥有者的权限来执行可执行文件,即使这个可执行文件是由 其他用户运行的. 具有s ...

  8. openwrt 汉化

    make menuconfig 添加luci LuCI--->Collections----- <*> luci 添加luci的中文语言包 LuCI--->Translatio ...

  9. for、while循环的洪荒之力

    在python里,如果说print语句是用得最多的话,那么,要我说,除了for语句,谁都不敢认老二. 下面,让我们来看看for语句能搞出什么花样 1. 计时(无限次数) 说到计时,我们先来试下显示当前 ...

  10. 正确使用Core Data多线程的3种方式

    在#Pragma Conference 2015会议上,Marcus Zarra,撰写过关于Core Data和Core Animation的书,叙述了三种在多线程环境下使用Core Data的方法并 ...