题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质。

  思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢……有人给出这样的答案,找到分量中点数最少的块,把它的所有入边都去掉……好像是对的,但是万一这个块本来就有一个入度怎么办?这个边是不可以删的啊。所以我觉得这种办法是有点的问题的,所以最靠谱的方法还是斌哥他们给出的方法,最后的时候把点分成两个集合x和y,x和y本身都是完全图块,然后让x中的每一个点都指向y中的每一个点,y中没有边指向x,假设x中有a个点,y中有b个点,a+b = n,容易得到ans = a*(a-1) + b*(b-1) - a*b - m,等价变形为ans = n*n - n - a*b - m,根据我们高中学过的不等式的性质,a×b在a=b的时候取得最大值,a与b相差的越多,a×b越小,所以我们可以让a更小,所以可以选择一个入度或者出度为0的分量作为x,选出点最少的块作为x,那么ans就是最大的。

  感悟:感觉这个题很好的把图论和数学划分的思想结合到了一起。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
#define maxn 100010
int dfn[maxn],low[maxn],id[maxn],sum[maxn],in[maxn],out[maxn];
int head[maxn],all,tot,scc,vis[maxn];
struct Edge
{
int to,nxt;
}edge[maxn];
stack<int> st;
void init()
{
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(id,,sizeof(id));
memset(sum,,sizeof(sum));
all = ;
scc = ;
while(!st.empty()) st.pop();
memset(in,,sizeof(in));
memset(out,,sizeof(out));
}
void tarjan(int u)
{
dfn[u] = low[u] = ++all;
st.push(u);
for(int i = head[u];i != -;i = edge[i].nxt)
{
int v = edge[i].to;
if(!dfn[v])
{
tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(!id[v]) low[u] = min(low[u],dfn[v]);
}
if(low[u] == dfn[u])
{
int num;
scc++;
while(!st.empty())
{
num = st.top();
st.pop();
id[num] = scc;
sum[scc]++;
if(num == u) break;
}
}
}
int main()
{
int t,n,m,a,b,ca = ;
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
tot = ;
memset(head,-,sizeof(head));
for(int i = ;i < m;i++)
{
scanf("%d%d",&a,&b);
edge[i].to = b;
edge[i].nxt = head[a];
head[a] = i;
}
init();
for(int i = ;i <= n;i++)
{
if(!dfn[i])
tarjan(i);
}
printf("Case %d: ",++ca);
if(scc == )
{
puts("-1");
continue;
}
for(int u = ;u <= n;u++)
{
for(int i = head[u];i != -;i = edge[i].nxt)
{
int v = edge[i].to;
if(id[u] != id[v])
{
in[id[v]]++;
out[id[u]]++;
}
}
}
long long tmpans = (long long)(n*n-n-m);
long long ans = ;
for(int i = ;i <= scc;i++)
{
if(in[i]== || out[i]==)
ans = max(ans,tmpans - sum[i]*(n-sum[i]));
}
printf("%I64d\n",ans);
}
return ;
}

HDU 4635 Strongly connected(强连通分量缩点+数学思想)的更多相关文章

  1. HDU 4635 Strongly connected (强连通分量+缩点)

    <题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...

  2. HDU 4635 Strongly connected (强连通分量)

    题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...

  3. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  4. HDU 4635 Strongly connected(强连通)经典

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  5. hdu 4635 Strongly connected 强连通

    题目链接 给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图. 只做过加多少条边变成强连通的, 一下子就懵逼了 我们可以反过来想. 最后的图不是强连通, 那么我们一定可以将它分 ...

  6. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. HDU 4635 Strongly connected(强连通分量,变形)

    题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...

  8. HDU 4635 - Strongly connected(2013MUTC4-1004)(强连通分量)

    t这道题在我们队属于我的范畴,最终因为最后一个环节想错了,也没搞出来 题解是这么说的: 最终添加完边的图,肯定可以分成两个部X和Y,其中只有X到Y的边没有Y到X的边,那么要使得边数尽可能的多,则X部肯 ...

  9. HDU 4635 Strongly connected ——(强连通分量)

    好久没写tarjan了,写起来有点手生,还好1A了- -. 题意:给定一个有向图,问最多添加多少条边,让它依然不是强连通图. 分析:不妨考虑最大时候的临界状态(即再添加一条边就是强连通图的状态),假设 ...

随机推荐

  1. Java 算法

    1.简单的冒泡排序 //冒泡算法一共两种 // -----冒泡算法(1) int a[]={23,69,4,58,1,20}; for (int i = 0; i < a.length-1; i ...

  2. 关于解决“No matching provisioning profiles found”问题-ios

    xcode7之后真机调试就可以不需要调试证书了,但其中也会遇到一些问题令人挠头搔耳.记录下来是给自己提供方便,也为初遇到此问题的人提供解答,利人利己的事情我做!   上图: 图一 本人有一种视警号为e ...

  3. ECOS-Ecstore mongodb大数据 读写效率优化

    转自同功BBS 拆表存取kv <?php /* 经过拆变优化的ECStore mongodb 类 base/lib/kvstore/mongodb.php*/ class base_kvstor ...

  4. robotium和appium的一些区别

    Appium是基于UIAutomator框架实现的.Appium测试进程与目标应用进程是分开的,所以Appium不能直接访问目标应用的各种element属性进行copy&paste,而只能模拟 ...

  5. sql参数化查询避免注入漏洞的原因探析

    网上其他同学的都说是重用执行计划,将用户输入的作为文本查询,到底如何实现,我用下面三行代码来解析一下. DECLARE @test NVARCHAR() SET @test=' or 1='1 SEL ...

  6. 完美版cookie设置/得到/删除2016/423

    function setCookie(key, value, t) { var oDate = new Date(); oDate.setDate( oDate.getDate() + t ); do ...

  7. wordpress建站过程2——结构

    开始wordpress之前,我们需要了解,wordpress的结构和调用方式. 当一个wordpress开始之后,他会读取[当前主题]的index.php.所以一旦主题切换了,它读的就是其他主题的in ...

  8. android 属性动画

    一直再追郭霖的博客和imooc上的一些新的视频,最近有讲到属性动画. 以下内容为博客学习以及imooc上视频资料的学习笔记: 在3.0之前比较常见的动画为tween动画和frame动画: tween动 ...

  9. 用Visual Studio 2015 编写第一个UMDF驱动遇到的问题!!

    前提:Visual Studio 2015已经成功安装了驱动环境,WDK都已经完全正常安装了,在Visual Studio 2015的菜单可以看到"Driver"菜单项了.这说明已 ...

  10. 入门级(python)

    1.素数,求1-100之间的素数(想在代码中写中文注释,加一句#coding=utf-8,注意等号左右没空格) def isPrime(n): if(n == 1): return False els ...