http://uoj.ac/problem/261 (题目链接)

题意

  给出一棵树,给出一些起点和终点,没走一条路径耗费时间1,每个节点上有一个权值w,问有多少条路径经过这个节点时所用的时间恰好是w。

Solution

  转自:http://blog.csdn.net/haarmony/article/details/53259338

  约定第${i}$个人起终点的${lca(s[i],t[i])}$为${lca[i]}$,点${i}$深度为${deep[i]}$

  • 考虑可能对点${u}$有贡献的第${i}$个跑步者,${lca[i]}$肯定在${u}$或者${u}$上方,否则不经过${u}$点,即${lca[i]==u || lca[i]∉subtree[u]}$
  • 基于此前提,只有两种情况(有重合部分):${s[i]∈subtree[u]}$,${t[i]∈subtree[u]}$ 
    分类讨论能被${u}$看见的点${v}$的情况 
      1.${v}$为${i}$人起点${s[i]}$:${deep[s[i]]-w[u]==dep[u]}$ 
      2.${v}$为${i}$人终点${t[i]}$:${deep[s[i]]+deep[t[i]]-2*deep[lca[i]]-(deep[t[i]]-deep[u])==w[u]}$,即${deep[s[i]]-2*deep[lca[i]]==w[u]-deep[u]}$

  我们发现如果做个变换,即${deep[u]+w[u]==deep[s[i]]}$

  与${w[u]-deep[u]==deep[s[i]]-2*deep[lca[i]]}$的话,式子右边是不变的,那是不是可以开一个${cnt}$数组来统计一下子树中等于右式的出发点和结束点的个数呢?

    • 考虑使用${cnt[2][600600]}$存储起点/终点的${deep[s[i]]}$/${deep[s[i]]-2*deep[lca[i]]}$等于${j}$的点的数量,保存在数组${cnt[0
      or 1][j]}$中,那么当dfs中当前点到${u}$的时候,${ans[u]}$就可以从cnt数组中得到,特殊情况是:${u}$为第${i}$人的lca时可能导致${s[i]}$与${t[i]}$各对${ans[u]}$贡献一次,所以式子如下
    • ${ans[u]=cnt[0][dep[u]+w[u]]+cnt[0][w[u]-dep[u]]-重复部分}$。两下标为上面两个等式的左式,需要注意的是${dep[s[i]]-2*dep[lca[i]]}$有可能是负数,下标可以统一+300000处理成正数(否则挂成50分)。其中重复部分可以在消除lca标记的时候判掉。
    • 维护cnt数组的方式容易想到就是在${s[i],t[i],lca[i]}$上打标记,若当前点为${s[i]}$就计入${cnt[0][dep[s[i]]]}$,${t[i]}$同理,${lca[i]}$就把两个标记再退出去
    • 然而如果对于每颗子树建立一个cnt,再把cnt合并的话,复杂度是n^2的。于是发现搜到以v为根的子树时后,对v贡献的只有两个下标,那么在搜索点v前,传两个参数a,b记录一下原来的cnt两个值,dfs(v,a,b)${ans[v]-=a+b}$即可

细节

  细节很多,想清楚再写。

代码

// uoj261
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#define inf 2147483640
#define LL long long
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int T=300000,maxn=300010;
struct edge {int to,next;}e[maxn<<1],g[maxn],ct[maxn];
int cnt[2][10000010],h[maxn],hh[maxn],head[maxn];
int deep[maxn],fa[maxn][30],bin[30],Lca[maxn];
int n,m,c1,c2,c3,ans[maxn],cs[maxn],w[maxn],s[maxn],t[maxn]; void linke(int u,int v) {
e[++c1].to=v;e[c1].next=head[u];head[u]=c1;
e[++c1].to=u;e[c1].next=head[v];head[v]=c1;
}
void linkg(int u,int v) {g[++c2].to=v;g[c2].next=h[u];h[u]=c2;}
void linkt(int u,int v) {ct[++c3].to=v;ct[c3].next=hh[u];hh[u]=c3;} void dfs(int x) {
for (int i=1;i<=20;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa[x][0]) {
fa[e[i].to][0]=x;
deep[e[i].to]=deep[x]+1;
dfs(e[i].to);
}
}
int lca(int x,int y) {
if (deep[x]<deep[y]) swap(x,y);
int t=deep[x]-deep[y];
for (int i=0;bin[i]<=t;i++) if (bin[i]&t) x=fa[x][i];
for (int i=20;i>=0;i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return x==y ? x : fa[x][0];
}
void dfs(int x,int ta,int tb) {
for (int j,i=head[x];i;i=e[i].next) if (e[i].to!=fa[x][0]) {
j=e[i].to;
dfs(j,cnt[0][w[j]+deep[j]+T],cnt[1][w[j]-deep[j]+T]);
}
cnt[0][deep[x]+T]+=cs[x];
for (int j,i=hh[x];i;i=ct[i].next) {
j=ct[i].to;
cnt[1][deep[s[j]]-deep[Lca[j]]*2+T]++;
}
ans[x]+=cnt[0][w[x]+deep[x]+T]+cnt[1][w[x]-deep[x]+T]-ta-tb;
for (int j,i=h[x];i;i=g[i].next) {
j=g[i].to;
if (w[x]+deep[x]==deep[s[j]]) ans[x]--;
cnt[0][deep[s[j]]+T]--;cnt[1][deep[s[i]]-2*deep[x]+T]--;
}
}
int main() {
bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
scanf("%d%d",&n,&m);
for (int u,v,i=1;i<n;i++) {
scanf("%d%d",&u,&v);
linke(u,v);
}
dfs(1);
for (int i=1;i<=n;i++) scanf("%d",&w[i]);
for (int i=1;i<=m;i++) {
scanf("%d%d",&s[i],&t[i]);
Lca[i]=lca(s[i],t[i]);cs[s[i]]++;
linkg(Lca[i],i);
linkt(t[i],i);
}
dfs(1,0,0);
for (int i=1;i<=n;i++) printf("%d ",ans[i]);
return 0;
}

Solution

  树链剖分维护启发式合并来一发。

代码

#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<vector>
#include<cmath>
#define LL long long
#define inf (1ll<<30)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std; const int maxn=300010,rem=300000;
int cnt,n,m,ans[maxn],W[maxn];
int son[maxn],fa[maxn][30],bin[maxn],head[maxn],size[maxn],deep[maxn];
int c[maxn<<2];
struct edge {int to,next;}e[maxn<<1];
vector<pair<int,int> >v[maxn]; void link(int u,int v) {
e[++cnt]=(edge){v,head[u]};head[u]=cnt;
e[++cnt]=(edge){u,head[v]};head[v]=cnt;
}
void dfs(int x) {
size[x]=1;
for (int i=1;i<=20;i++) fa[x][i]=fa[fa[x][i-1]][i-1];
for (int i=head[x];i;i=e[i].next) if (e[i].to!=fa[x][0]) {
fa[e[i].to][0]=x;
deep[e[i].to]=deep[x]+1;
dfs(e[i].to);
size[x]+=size[e[i].to];
if (size[son[x]]<size[e[i].to]) son[x]=e[i].to;
}
}
int lca(int x,int y) {
if (deep[x]<deep[y]) swap(x,y);
int t=deep[x]-deep[y];
for (int i=0;bin[i]<=t;i++) if (t&bin[i]) x=fa[x][i];
for (int i=20;i>=0;i--) if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
return x==y ? x : fa[x][0];
}
void modify(int x,int val) {
for (int j=v[x].size(),i=0;i<j;i++)
c[v[x][i].first+rem]+=v[x][i].second*val;
for (int i=head[x];i;i=e[i].next)
if (e[i].to!=fa[x][0]) modify(e[i].to,val);
}
void dfs(int x,int tp) {
for (int i=head[x];i;i=e[i].next)
if (e[i].to!=son[x] && e[i].to!=fa[x][0]) dfs(e[i].to,0);
if (son[x]) dfs(son[x],1);
for (int i=head[x];i;i=e[i].next)
if (e[i].to!=son[x] && e[i].to!=fa[x][0]) modify(e[i].to,1);
ans[x]+=c[deep[x]+W[x]+rem];
for (int j=v[x].size(),i=0;i<j;i++) c[v[x][i].first+rem]+=v[x][i].second;
ans[x]+=c[deep[x]-W[x]+rem];
if (!tp) modify(x,-1);
} int main() {
bin[0]=1;for (int i=1;i<=20;i++) bin[i]=bin[i-1]<<1;
scanf("%d%d",&n,&m);
for (int x,y,i=1;i<n;i++) {
scanf("%d%d",&x,&y);
link(x,y);
}
dfs(1);
for (int i=1;i<=n;i++) scanf("%d",&W[i]);
for (int a,b,i=1;i<=m;i++) {
scanf("%d%d",&a,&b);int f=lca(a,b);
if (a==b && W[a]==0) ans[a]++; //pay attention
v[a].push_back(pair<int,int>(deep[a],1));
v[b].push_back(pair<int,int>(2*deep[f]-deep[a],1));
v[f].push_back(pair<int,int>(deep[a],-1));
v[f].push_back(pair<int,int>(2*deep[f]-deep[a],-1));
}
dfs(1,0);
for (int i=1;i<=n;i++) printf("%d ",ans[i]);
return 0;
}

【uoj261】 NOIP2016—天天爱跑步的更多相关文章

  1. [NOIp2016]天天爱跑步 线段树合并

    [NOIp2016]天天爱跑步 LG传送门 作为一道被毒瘤出题人们玩坏了的NOIp经典题,我们先不看毒瘤的"动态爱跑步"和"天天爱仙人掌",回归一下本来的味道. ...

  2. [Noip2016]天天爱跑步 LCA+DFS

    [Noip2016]天天爱跑步 Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要玩家每天按时上线,完成打卡任 ...

  3. 【LG1600】[NOIP2016]天天爱跑步

    [LG1600][NOIP2016]天天爱跑步 题面 洛谷 题解 考虑一条路径\(S\rightarrow T\)是如何给一个观测点\(x\)造成贡献的, 一种是从\(x\)的子树内出来,另外一种是从 ...

  4. NOIP2016天天爱跑步 题解报告【lca+树上统计(桶)】

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 nn个 ...

  5. BZOJ4719 [Noip2016]天天爱跑步

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  6. noip2016天天爱跑步

    题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养成类游戏,需要玩家每天按时上线,完成打卡任务. 这个游戏的地图可以看作一一棵包含 个结点 ...

  7. bzoj 4719: [Noip2016]天天爱跑步

    Description 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.?天天爱跑步?是一个养成类游戏,需要 玩家每天按时上线,完成打卡任务.这个游戏的地图可以看作一一 ...

  8. NOIP2016 天天爱跑步 80分暴力

    https://www.luogu.org/problem/show?pid=1600 题目描述 小c同学认为跑步非常有趣,于是决定制作一款叫做<天天爱跑步>的游戏.«天天爱跑步»是一个养 ...

  9. 4719: [Noip2016]天天爱跑步

    Time Limit: 40 Sec Memory Limit: 512 MB Submit: 1986 Solved: 752 [Submit][Status][Discuss] Descripti ...

  10. NOIP2016 天天爱跑步 线段树合并_桶_思维题

    竟然独自想出来了,好开心 Code: #include<bits/stdc++.h> #define setIO(s) freopen(s".in","r&q ...

随机推荐

  1. 独立成分分析(ICA)在fMRI数据处理时timecourse的理解

    来源: http://blog.sciencenet.cn/blog-479412-434990.html   在处理fMRI数据时,使用空间ICA的方法.将一个四维的fMRI数据分解为空间patte ...

  2. 产品经理技能之MRD的笔记之一

    原文:http://www.woshipm.com/pmd/131946.html/comment-page-1 产品经理技能之MRD 一.MRD与BRD的不同之处 BRD:这么做有什么好处,并说明好 ...

  3. vue 滚动加载

    <template> <div class="wraper" @scroll="onScroll($event)"> <div c ...

  4. (转)无法打开C盘,提示"本次操作由于这台计算机的限制被取消,请与你的管理员联系”

    今天下了一个网吧用的工具一不小心把系统给限制了好多双击打开C的时候就出现本次操作由于这台计算机的限制被取消,请与你的管理员联系下载一个精锐网吧辅助工具解除了一下现在但是还是不能双击 于是就在网上找帮啊 ...

  5. jboss eap 6.3 集群(cluster)配置

    接上一篇继续,Domain模式解决了统一管理多台jboss的问题,今天我们来学习如何利用mod_cluster来实现负载均衡.容错. mod_cluster是jboss的一个开源集群模块(基于apac ...

  6. 基于ASP.NET MVC的热插拔模块式开发框架(OrchardNoCMS)--BootStrap

    按照几个月之前的计划,也应该写一个使用Bootstrap作为OrchardNoCMS的UI库.之前这段时间都是在学习IOS开发,没顾得上写,也没顾得上维护OrchardNoCMS代码.看看我的活动轨迹 ...

  7. 20145221 《信息安全系统设计基础》实验五 简单嵌入式WEB服务器实验

    20145221 <信息安全系统设计基础>实验五 简单嵌入式WEB服务器实验 实验报告 队友博客:20145326蔡馨熠 实验博客:<信息安全系统设计基础>实验五 简单嵌入式W ...

  8. HTTP真的很简单

    原文:HTTP Made Really Easy因为我本身网络基础就很差,所以看到这篇文章一方面是学习网络知识,另一方面为了锻炼我蹩脚的英语水平,文中如有错误,欢迎浏览指正! 前言 在看这篇文章的时候 ...

  9. C#异步编程二

    上一异步编程的博客还是在9月份的,最近事情也比较多,烦恼事情一个接着一个,一个人的周末除了无聊就剩无聊了,也只有写写博客来打发下这无聊的时光.原本想着尽快把异步编程这块总结一下,之前把委托异步算是总结 ...

  10. OpenStack 简介

    OpenStack是IaaS(基础设施即服务)组件,让任何人都可以自行建立和提供云端运算服务. 此外,OpenStack也用作建立防火墙内的"私有云"(Private Cloud) ...