hihoCoder1284机会渺茫(唯一分解定理 + 约分)
题目链接
#1284 : 机会渺茫
描述
小Hi最近在追求一名学数学的女生小Z。小Z其实是想拒绝他的,但是找不到好的说辞,于是提出了这样的要求:对于给定的两个正整数N和M,小Hi随机选取一个N的约数N',小Z随机选取一个M的约数M',如果N'和M'相等,她就答应小Hi。
小Z让小Hi去编写这个随机程序,到时候她review过没有问题了就可以抽签了。但是小Hi写着写着,却越来越觉得机会渺茫。那么问题来了,小Hi能够追到小Z的几率是多少呢?
输入
每个输入文件仅包含单组测试数据。
每组测试数据的第一行为两个正整数N和M,意义如前文所述。
对于40%的数据,满足1<=N,M<=10^6
对于100%的数据,满足1<=N,M<=10^12
输出
对于每组测试数据,输出两个互质的正整数A和B(以A分之B表示小Hi能够追到小Z的几率)。
- 样例输入
-
3 2
- 样例输出
-
4 1 分析:对 n 和 m 分解,得到n和m的每一个素数的指数en[],em[],然后取公约数,即取每个指数小的那个得到新的 et[], sum(et[]) / sum(en[]) * sum(em[])即所求,就是在en里面找一个,在em里面找一个,1/(sum[en] * sum[em]),一共有sum[et]个
题目等级为2,然后我却WA了好几次,RE了好几次 =_=...#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL;
const int Max = + ; //开到6次RE
bool flag[Max + ];
int prime[Max + ], tot;
int en[Max + ], em[Max + ], et[Max + ];
void get_prime()
{
memset(flag, false, sizeof(flag));
tot = ;
for (int i = ; i <= Max;i ++)
{
if (!flag[i])
{
prime[++tot] = i;
for (int j = i; j <= Max / i; j++)
flag[i * j] = true;
}
}
}
void get_fact(LL n, int * temp)
{
memset(temp, , sizeof(temp));
for (int i = ; i <= tot; i++)
{
if (prime[i] > n)
break;
if (n % prime[i] == )
{
while (n % prime[i] == )
{
n = n / prime[i];
temp[prime[i]]++;
}
}
}
if (n > )
temp[n]++;
}
LL get_sum(int temp[])
{
LL sum = ;
for (int i = ; i <= tot; i++)
{
if (temp[prime[i]])
sum *= (temp[prime[i]] + );
}
return sum;
}
void solve()
{
memset(et, , sizeof(et));
for (int i = ; i <= tot; i++)
{
if (en[prime[i]] && em[prime[i]])
{
int minn = min (en[prime[i]], em[prime[i]]); //取最小的指数
et[prime[i]] += minn;
}
}
}
LL get_gcd(LL a, LL b)
{
if (b == )
return a;
return get_gcd(b, a % b);
}
int main()
{
get_prime();
LL n, m;
scanf("%lld%lld", &n, &m);
get_fact(n, en);
get_fact(m, em);
solve();
LL numn = get_sum(en);
LL numm = get_sum(em);
LL numf = get_sum(et); // 最后结果就是 numf / (numn * numm)
所以先对numf 和 numn约分,
然后把约分后的numf与numm约分,最后numn * numm
LL x1 = numf;
LL t1 = get_gcd(numn, numf);
x1 = x1 / t1;
numn = numn / t1; LL t2 = get_gcd(numm, x1);
x1 = x1 / t2;
numm = numm / t2;
numn = numn * numm; printf("%lld %lld\n", numn, x1);
return ;
}
hihoCoder1284机会渺茫(唯一分解定理 + 约分)的更多相关文章
- hihocoder-1284 机会渺茫(水题)
机会渺茫 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi最近在追求一名学数学的女生小Z.小Z其实是想拒绝他的,但是找不到好的说辞,于是提出了这样的要求:对于给定的两 ...
- UVa10375:选择与除法(唯一分解定理)
The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...
- NOIP2009Hankson 的趣味题[唯一分解定理|暴力]
题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- uva10375 Choose and Divide(唯一分解定理)
uva10375 Choose and Divide(唯一分解定理) 题意: 已知C(m,n)=m! / (n!*(m-n!)),输入整数p,q,r,s(p>=q,r>=s,p,q,r,s ...
- 1341 - Aladdin and the Flying Carpet ---light oj (唯一分解定理+素数筛选)
http://lightoj.com/volume_showproblem.php?problem=1341 题目大意: 给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. ...
- UVA 10375 Choose and divide【唯一分解定理】
题意:求C(p,q)/C(r,s),4个数均小于10000,答案不大于10^8 思路:根据答案的范围猜测,不需要使用高精度.根据唯一分解定理,每一个数都可以分解成若干素数相乘.先求出10000以内的所 ...
- 唯一分解定理 poj 1365
一行代表一个数 x 给你底数和指数 求x-1的唯一分解定理的底数和指数 从大到小输出 #include<stdio.h> #include<string.h> #include ...
- hiho #1284 机会渺茫
#1284 : 机会渺茫 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi最近在追求一名学数学的女生小Z.小Z其实是想拒绝他的,但是找不到好的说辞,于是提出了这样的要 ...
随机推荐
- 浅析手机抓包方法实践(zt)
原文:http://drops.wooyun.org/tips/12467 0x00 摘要 在移动逆向分析以及 App 开发的时候,总会需要对其网络行为进行监控测试,本文总结一些抓包思路,并对其使用方 ...
- sql中去除重复的项
方法一:group by (取最小的id)select min(id) id,T from Table_1 group by T 方法二:union (不需要id)select T from Tab ...
- PotPlayer 1.6.52965 美化版|视频播放器
Potplayer播放器,基本上可以解析大部分的视频格式.作为单机版的视频播放器很不错的选择! Potplayer,只为播放而生! exp: 点击下载
- c++ iterator(迭代器)分类及其使用
前言: 以下的内容为我阅读c++沉思录18,19,20章的笔记以及自己的想法. 正文: 总所周知,c++的stl中提出了iterator的概念,这是C所没有的.在一般的使用中,iterator的行为很 ...
- js中return的用法
<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title>& ...
- linux安装软件的学习
Yum(全称为 Yellow dog Updater, Modified)是一个在Fedora和RedHat以及CentOS中的Shell前端软件包管理器.基于RPM包管理,能够从指定的服务器自动下载 ...
- 50ms延时程序
12MHz晶振 一个机器周期2us, DEL: MOV R7,#200D DEL1: MOV R6,#125 DEL2: DJNZ R6,DEL2 ;125*2=250us DJNZ R7,DE ...
- bootstrap实现pc屏幕五等分
<!DOCTYPE html><html lang="en" xmlns="http://www.w3.org/1999/xhtml"> ...
- java中map<string,int>
java中 Iterator it=wordsmap.entrySet().iterator(); while(it.hasNext()) { Map.Entry<String,Integer& ...
- C#-WinForm-跨窗体 构造函数传值 及应用—登录式窗口传值、如何关闭主页面时关闭应用程序、如何打开唯一窗口—★★★★★五星重量级
构造函数可以传任意类型的值,并可以同时传多个值 结构函数传值的初步应用--简单的登陆式界面 现在我有两个窗体Form3和Form4,如下,如何点击Form3中的按钮后,打开Form4并将Form3中的 ...