4919 线段树练习4

 时间限制: 1 s
 空间限制: 128000 KB
 
 
 
题目描述 Description

给你N个数,有两种操作

1:给区间[a,b]内的所有数都增加X

2:询问区间[a,b]能被7整除的个数

输入描述 Input Description

第一行一个正整数n,接下来n行n个整数,再接下来一个正整数Q,表示操作的个数. 接下来Q行每行若干个整数。如果第一个数是add,后接3个正整数a,b,X,表示在区间[a,b]内每个数增加X,如果是count,表示统计区间[a,b]能被7整除的个数

输出描述 Output Description

对于每个询问输出一行一个答案

样例输入 Sample Input

2 3 4
6
count 1 3
count 1 2
add 1 3 2
count 1 3
add 1 3 3
count 1 3
样例输出 Sample Output

0

0

0

1

数据范围及提示 Data Size & Hint

10%:1<N<=10,1<Q<=10

30%:1<N<=10000,1<Q<=10000

100%:1<N<=100000,1<Q<=100000

这道题的比较裸,需要思考的只有如何pushup和change信息。

对于线段树里存的元素是一个桶,记录这一段余数为1,2,3,4,5,6,0的分别有多少。

在pushup时只需将ls和rs的桶相加即可(代码11行)

在修改时则只需将数组内的是s[i]元素想右移动s[(i+a)%7]即可.

其他基本与普通线段树无异。

 #include<cstdio>
#include<cstring>
#define ls x<<1
#define rs x<<1|1
const int N=;
int lazy[N<<];
struct X
{
int s[];
X() {memset(s,,sizeof(s));};
void pu(const X &a,const X &b)
{
for(int i=;i<;i++)
s[i]=a.s[i]+b.s[i];
}
void gb(int x)
{
X t;
for(int i=;i<;i++) t.s[(i+x)%]=s[i];
*this=t;
}
}tree[N<<];
char c[];
void pd(int x)
{
if(lazy[x])
{
lazy[ls]+=lazy[x];
lazy[rs]+=lazy[x];
tree[ls].gb(lazy[x]);
tree[rs].gb(lazy[x]);
lazy[x]=;
}
}
void bu(int l,int r,int x)
{
if(l==r)
{
int a;
scanf("%d",&a);
tree[x].s[a%]=;
}
else
{
int mid=(l+r)>>;
bu(l,mid,ls);
bu(mid+,r,rs);
tree[x].pu(tree[ls],tree[rs]);
}
}
void chan(int l,int r,int x,int s,int ql,int qr)
{
if(ql<=l&&qr>=r) lazy[x]+=s,tree[x].gb(s);
else
{
int mid=(l+r)>>;
pd(x);
if(mid>=ql) chan(l,mid,ls,s,ql,qr);
if(qr>mid) chan(mid+,r,rs,s,ql,qr);
tree[x].pu(tree[ls],tree[rs]);
}
}
int ask(int l,int r,int x,int ql,int qr)
{
if(ql<=l&&qr>=r) return tree[x].s[];
else
{
int mid=(l+r)>>,re=;
pd(x);
if(mid>=ql) re+=ask(l,mid,ls,ql,qr);
if(qr>mid) re+=ask(mid+,r,rs,ql,qr);
tree[x].pu(tree[ls],tree[rs]);
return re;
}
}
int main()
{
int n,q;
scanf("%d",&n);
bu(,n,);
scanf("%d",&q);
while(q--)
{
scanf("%s",c);
if(c[]=='a')
{
int tj,l,r;
scanf("%d%d%d",&l,&r,&tj);
chan(,n,,tj,l,r);
}
else
{
int l,r;
scanf("%d%d",&l,&r);
printf("%d\n",ask(,n,,l,r));
}
}
return ;
}

codevs4919 线段树练习4的更多相关文章

  1. Codevs-4919 线段树练习4(区间加上一个值并求摸个区间整除k的数的个数,线段树+数组维护)

    给你N个数,有两种操作 1:给区间[a,b]内的所有数都增加X 2:询问区间[a,b]能被7整除的个数 输入描述 Input Description 第一行一个正整数n,接下来n行n个整数,再接下来一 ...

  2. 【codevs4919】线段树练习4

    题目大意:维护一个长度为 N 的序列,支持两种操作:区间加,区间查询有多少数是 7 的倍数. 题解:在每个线段树中维护一个权值数组 [0,6],由于个数显然支持区间可加性,因此可用线段树来维护. 代码 ...

  3. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  4. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  5. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  6. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  7. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  8. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  9. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

随机推荐

  1. Ogre1.6.5 编译链接错误之FreeImage

    这两天想重新学习下ogre,但是在vs2010上编译1.6.5的版本上遇到链接失败的问题,耗了不少时间这里记一下. 主要是一些重定义报错. >msvcprtd.lib(MSVCP100D.dll ...

  2. Windows Service 开发,安装与调试

    Visual Studio.net 2010 Windows Service 开发,安装与调试 本示例完成一个每隔一分钟向C:\log.txt文件写入一条记录为例,讲述一个Windows Servic ...

  3. 高度平衡的二叉搜索树(AVL树)

    AVL树的基本概念 AVL树是一种高度平衡的(height balanced)二叉搜索树:对每一个结点x,x的左子树与右子树的高度差(平衡因子)至多为1. 有人也许要问:为什么要有AVL树呢?它有什么 ...

  4. Property ClientHeight does not exist 问题解决

    delphi的TFrame继承自另一个TFrame时,最好通过File->New->Other...->Delphi Projects->Inheritable Items 的 ...

  5. 【AT91SAM3S】串口UART初始化及收发数据

    SAM3S中的UART串口是一个两线异步收发器.这个串口能用来通信或者跟踪.有两个DMA通道与UART串口关联,可通过使用DMA处理串口传输以节省CPU时间. SAM3S4C中有两个UART.与外设引 ...

  6. HTML 事件属性_03

    全局事件属性 HTML 4 的新特性之一是可以使 HTML 事件触发浏览器中的行为,比方说当用户点击某个 HTML 元素时启动一段 JavaScript. 如果你想学习更多关于事件属性,请访问 Jav ...

  7. (转)JPEG图片数据结构分析- 附Png数据格式详解.doc

       一.简述 JPEG是一个压缩标准,又可分为标准JPEG.渐进式JPEG及JPEG2000三种: ①标准JPEG:以24位颜色存储单个光栅图像,是与平台无关的格式,支持最高级别的压缩,不过,这种压 ...

  8. (转)DataGridView多维表头及其扩展功能

    dataGridView1.RowHeadersVisible = false;把整行选中那一列去掉.如果需要整行选中,新增一按钮列模拟实现.上源码:多维DataGridView 有个简易的方法: 1 ...

  9. linux iostat 性能指标说明

    Linux系统中的 iostat是I/O statistics(输入/输出统计)的缩写,iostat工具将对系统的磁盘操作活动进行监视. 它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU使用情况. ...

  10. asm createdisk时提示没有权限

    [root@linux Packages]# /etc/init.d/oracleasm createdisk asm1 /dev/sdg1Marking disk "asm1" ...